
Ubuntu Packaging
Guide

© 2024 Canonical Ltd.
All rights reserved.

Contents
1 Tutorial 3

1.1 Core tutorial . 3

2 How-to guides 5
2.1 How do I…? . 5

3 Explanation 26
3.1 Upstream and downstream . 26
3.2 Package model . 29
3.3 Ubuntu development process . 34
3.4 Ubuntu releases . 34
3.5 Ubuntu package archive . 39
3.6 Launchpad . 45
3.7 Sponsoring . 49
3.8 Proposed migrations . 49
3.9 Stable Release Updates (SRU) . 49
3.10 Debian syncs . 50
3.11 Debian merges . 50
3.12 Transitions . 50
3.13 Backports . 50
3.14 Main Inclusion Review (MIR) . 51

4 Reference 53
4.1 Basic overview of the debian/ directory . 53
4.2 Supported architectures . 53
4.3 Package tests . 54
4.4 Package version format . 55
4.5 git-ubuntu . 55
4.6 APT . 55
4.7 Debian policy . 55
4.8 Filesystem Hierarchy Standard (FHS) . 56
4.9 (To be) Outdated packaging tools . 56
4.10 Launchpad text markup . 56
4.11 Glossary . 71

5 Contribute to the Ubuntu Packaging Guide 97
5.1 How to contribute . 97
5.2 Contribution format for the project . 97

Index 99

1 of 102

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2 of 102

1. Tutorial
This section contains step-by-step tutorials to help you get started with Ubuntu packaging
and development. We hope the tutorials make as few assumptions as possible and are acces-
sible to anyone with an interest in Ubuntu packaging.

This should be a great place to start learning about packaging and development.

1.1. Core tutorial
This tutorial will introduce you to the basics of Ubuntu packaging, while helping to set up
your computer so that you can start working with packages.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

1.1.1. Getting set up

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

1.1.2. Make changes to a package

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

3 of 102

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

1.1.3. Create a new package

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

1.1.4. Fix a bug

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4 of 102

2. How-to guides
If you have a specific goal in mind and are already familiar with the basics of Ubuntu packag-
ing, our how-to guides cover some of the more common operations and tasks that you may
need to complete.

They will help you to achieve a particular end result, but may require you to understand and
adapt the steps to fit your specific requirements.

2.1. How do I…?

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.1. Get the source of a package

Before you can work on a source package you need to get the source code of that package.
This article presents four ways to achieve this: git-ubuntu, pull-pkg, and apt-get source,
and dget.

git-ubuntu

Note

git-ubuntu is the modern way of working with Ubuntu source packages.

Warning

git-ubuntu is still in active development and these instructions will likely change over
time. While git-ubuntu will become the default packaging method, for now you may
encounter rough edges or unsupported edge cases. You can ask for help in the
#ubuntu-devel channel or open a bug report2 on Launchpad . Bug reports are very wel-
come!

2 https://bugs.launchpad.net/git-ubuntu

5 of 102

https://bugs.launchpad.net/git-ubuntu

Install

The following command will install git-ubuntu:

sudo snap install --classic --edge git-ubuntu

Basic usage

To clone a source package git repository to a directory:

git-ubuntu clone PACKAGE [DIRECTORY]

To generate the orig tarballs for a given source package:

git-ubuntu export-orig

Example

git-ubuntu clone hello
cd hello
git-ubuntu export-orig

You can find further information in these two blog articles (note that they are from 2017):

• git-ubuntu clone3

• Git Ubuntu: More on the imported repositories4

pull-pkg

The pull-pkg command is part of the ubuntu-dev-tools package and downloads a specific
version of a source package, or the latest version from a specified release.

Install

The following command will install ubtuntu-dev-tools, which includes pull-pkg:

sudo apt update && sudo apt install ubuntu-dev-tools

3 https://ubuntu.com/blog/git-ubuntu-clone
4 https://ubuntu.com/blog/git-ubuntu-more-on-the-imported-repositories

6 of 102

https://ubuntu.com/blog/git-ubuntu-clone
https://ubuntu.com/blog/git-ubuntu-more-on-the-imported-repositories

Basic usage

pull-pkg [OPTIONS] PACKAGE-NAME [SERIES|VERSION]

You can find further information on the manual page pull-pkg(1)5.

Examples

There are convenience scripts that follow a similar syntax and set the OPTIONS for pull type
and Distribution appropriately. Here are three examples (although there are others):

pull-lp-source

• To download the latest version of the hello source package for the Current Release in
Development from Launchpad:

pull-lp-source hello

• To download the latest version of the hello source package for the Ubuntu mantic re-
lease from Launchpad:

pull-lp-source hello mantic

• To download version 2.10-3 of the hello source package from Launchpad:

pull-lp-source hello 2.10-3

pull-ppa-source

• To download the latest version of the hello source package from the Launchpad Per-
sonal Package Archive (PPA), also called hello, of the user dviererbe:

pull-ppa-source --ppa 'dviererbe/hello' 'hello'

• To download the latest version of the hello source package for the mantic release from
the same Launchpad PPA:

pull-ppa-source --ppa 'dviererbe/hello' 'hello' 'mantic'

• To download version 2.10-3 of the hello source package for the mantic release from
the same Launchpad PPA:

pull-ppa-source --ppa 'dviererbe/hello' 'hello' '2.10-3'

5 https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

7 of 102

https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

pull-debian-source

• To download the latest version of the hello source package from Debian:

pull-debian-source 'hello'

• To download the latest version of the hello source package for the sid release from
Debian:

pull-debian-source 'hello' 'sid'

• To download the version 2.10-3 of the hello source package from Debian:

pull-debian-source 'hello' '2.10-3'

apt-get source

The APT package manager can also fetch source packages.

Important

Source packages are tracked separately from binary packages via deb-src lines in the
sources.list(5)6 files. This means that you will need to add such a line for each repos-
itory you want to get source packages from; otherwise you will probably get either the
wrong (too old/too new) source package versions – or none at all.

Basic usage

apt

apt source PACKAGE-NAME

You can find further information on the manual page apt(8)7.

apt-get

apt-get source PACKAGE-NAME

You can find further information on the manual page apt-get(8)8.

6 https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
7 https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
8 https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html

8 of 102

https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html

Example

apt

apt source 'hello'

apt-get

apt-get source 'hello'

dget

The dget command is part of the devscripts package. If you call it with the URL of a .dsc or
.changes file it acts as a source package aware wget(1)9 and downloads all associated files
that are listed in the .dsc or .changes file (debian tarball, orig tarballs, upstream signatures).

Install

sudo apt update && sudo apt install devscripts

Basic usage

dget URL

Example

Go to Launchpad and select the package you want to download (in this example; the latest
version of the hello source package):

9 https://manpages.ubuntu.com/manpages/en/man1/wget.1.html

9 of 102

https://manpages.ubuntu.com/manpages/en/man1/wget.1.html

Next, copy the download link of the .dsc file:

10 of 102

Finally, call dget with the copied URL:

dget https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/hello/2.10-3/hello_2.
10-3.dsc

Note that this works for links from Debian and Launchpad Personal Package Archives too.

You can find further information on the manual page dget(1)10.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

10 https://manpages.ubuntu.com/manpages/en/man1/dget.1.html

11 of 102

https://manpages.ubuntu.com/manpages/en/man1/dget.1.html

2.1.2. Download a new upstream version

Once in a while you may need to download a new upstream release or check if a newer up-
stream release exists; for example:

• When fixing a bug, to rule out that a more recent version may have already fixed the
bug.

• As a source package maintainer , to check for, download, and package a newer upstream
release.

Most of the source packages contain a watch file in the debian folder. This is a configuration
file for the uscan(1)11 utility which allows you to automatically search HTTP or FTP sites or
git(1)12 repositories for newly available updates of the upstream project.

Note

If the source package does not contain a debian/watch file, there may be an explanation
and instructions in the debain/README.source or debian/README.debian file (if available)
that tell you how to proceed.

Best practices

You should download upstreamfile(s)manually only if there is no automatic downloadmech-
anism and you can’t find any download instructions.

Remember that a package may get distributed to hundreds of thousands of users. Humans
are the weakest link in this distribution chain, because we may accidentally miss or skip a
verification step, misspell a URL, copy the wrong URL or copy a URL only partially, etc.

If you still have to download upstream file(s) manually make sure to verify Cryptographic Sig-
natures (if available). The Signing Key of the upstream project should be stored in the source
package as debian/upstream/signing-key.asc (if the upstream project has a signing key).

uscan(1)13 verifies downloads against this signing key automatically (if available).

Download new upstream version (if available)

Running uscan(1)14 from the Root of the Source Tree will check if a newer upstream version
exists and downloads it:

uscan

If uscan(1)15 could not find a newer upstream version it will return with the exit code 1 and
print nothing to the Standard Output .

uscan(1)16 reads the first entry in debian/changelog to determine the name and version of
the source package.

11 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
12 https://manpages.ubuntu.com/manpages/en/man1/git.1.html
13 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
14 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
15 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
16 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html

12 of 102

https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/git.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html

You canalways add the --verboseflag to seemore information (e.g., which version uscan(1)17

found):

uscan --verbose

Check for new upstream version (no download)

If you just want to check if a new update is available, but you don’t want to download any-
thing, you can run the uscan(1)18 command with the --safe flag from the Root of the source
tree:

uscan --safe

Force the download

You can use the --force-download flag to download an upstream release from the upstream
project, even if the upstream Release is up-to-date with the source package:

uscan --force-download

Download the source of older versions from the upstream project

If you want to download the source of a specific version from the upstream project you can
use the --download-version flag.

Basic syntax:

uscan --download-version VERSION

For example:

uscan --download-version '1.0'

In the special case that youwant to download the source for the current version of the source
package from the upstream project you can use the --download-current-version flag in-
stead, which parses the version to download from the first entry in debian/changelog file:

uscan --download-current-version

Note

The --download-version and --download-current-versionflags are both a best-effort fea-
tures of uscan(1)19.

There are special cases where they do not work for technical reasons.

17 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
18 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
19 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html

13 of 102

https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html

Note

In most cases you actually want to download the source from the Ubuntu Archive and not
re-download the source from the upstream project.

How to get the Source from the Archive? (page 5)

Further Information

• Manual page – uscan(1)20

• Debian wiki – debian/watch21

• Debian policy 4.6.2.0 – Upstream source location: debian/watch22

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.3. Build packages

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.4. Install built packages

You have a built binary packages of a source package and want to install it (e.g. to test the
packages). This article demonstrates multiple ways how you can achieve that.

20 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
21 https://wiki.debian.org/debian/watch
22 https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

14 of 102

https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://wiki.debian.org/debian/watch
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

Using your package manager

You can use the apt(8)23, apt-get(8)24 or dpkg(1)25 package manager to install or uninstall
packages on an Ubuntu installation.

Note

apt(8)26 is intended to be used interactively by humans and does not guarantee a stable
command line interface (suitable for machine-readability) while apt-get(8)27 is intended
for unattended usage, for example, in scripts.

dpkg(1)28 is a package manager for Debian-based systems. It can install, remove, and
build packages, but unlike theAPT packagemanagement systems, it cannot automatically
download and install packages or their dependencies.

See also the package management29 guide from the Ubuntu Server documentation for
more details.

Install .deb files

apt

You can install one or multiple .deb files by using apt install command:

sudo apt install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo apt install 'hello_2.10-3_amd64.deb'

apt-get

You can install one or multiple .deb files by using apt-get install command:

sudo apt-get install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo apt-get install hello_2.10-3_amd64.deb

23 https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
24 https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html
25 https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
26 https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
27 https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html
28 https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
29 https://ubuntu.com/server/docs/package-management

15 of 102

https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html
https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/en/man8/apt-get.8.html
https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
https://ubuntu.com/server/docs/package-management

dpkg

You can install one or multiple .deb files by using dpkg --install command:

sudo dpkg --install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo dpkg --install hello_2.10-3_amd64.deb

Uninstall packages

Installed packages often setup configurationfiles and create other datafiles. When youwant
to uninstall a package you have to decide if you want to keep these files or want to delete
them too.

Keeping configuration files can be useful to avoid having to reconfigure a package if it is
reinstalled later, but this may have side-effects when testing to install multiple packages.

Keep the configuration files

apt

You can uninstall one ormultiple packages and keep their configuration files by using the apt
remove command:

sudo apt remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo apt remove hello

apt-get

You can uninstall one or multiple packages and keep their configuration files by using the
apt-get remove command:

sudo apt-get remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo apt-get remove hello

16 of 102

dpkg

You can uninstall one or multiple packages and keep their configuration files by using the
dpkg --remove command:

sudo dpkg --remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo dpkg --remove hello

Delete the configuration files

apt

You can uninstall one or multiple packages and delete their configuration files by using the
apt purge command:

sudo apt purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

sudo apt purge hello

apt-get

You can uninstall one or multiple packages and delete their configuration files by using the
apt-get purge command:

sudo apt-get purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

sudo apt-get purge hello

dpkg

You can uninstall one or multiple packages and delete their configuration files by using the
dpkg --purge command:

sudo dpkg --purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

sudo dpkg --purge hello

17 of 102

Install packages from a PPA

Using add-apt-repository

The add-apt-repository command adds a Repository (e.g. a Personal Package Archive (PPA)
from Launchpad) to the /etc/apt/sources.list.d directory (see the sources.list(5)30man-
ual page formore details), so you can install the packages provided by the repository like any
other package from the Ubuntu Archive.

sudo add-apt-repository ppa:LP-USERNAME/PPA-NAME

LP-USERNAME
The username of the Launchpad user who owns the PPA.

PPA-NAME
The name of the PPA.

Forexample, to add theLaunchpadPPAwith thename helloof theLaunchpaduser dviererbe
you need to run:

sudo add-apt-repository ppa:dviererbe/hello

Then, you can install, just as normal, the hello package contained in the PPA:

apt

sudo apt install hello

apt-get

sudo apt-get install hello

See the add-apt-repository(1)31 manual page for more details.

Add PPA manually

When you visit the web interface of the Launchpad PPA you want to add, you can see a text
reading something like “Technical details about this PPA”. When you click on the text, it will
unfold and show the details you need to add the PPA.

30 https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
31 https://manpages.ubuntu.com/manpages/en/man1/add-apt-repository.1.html

18 of 102

https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/en/man1/add-apt-repository.1.html

The steps to add the PPA are as follows:

1. Add the PPA entry to /etc/apt/sources.list.d directory

sudo editor /etc/apt/sources.list.d/launchpad_ppa.sources

Add the following lines (substituting LAUNCHPAD-USERNAME AND PPA-NAME for your own
case) and save the file:

deb https://ppa.launchpadcontent.net/LAUNCHPAD-USERNAME/PPA-NAME/ubuntu SERIES main
deb-src https://ppa.launchpadcontent.net/LAUNCHPAD-USERNAME/PPA-NAME/ubuntu SERIES
main

2. Add the of the PPA Signing Key to /etc/apt/trusted.gpg.d directory.

The following command will download the PPA signing key from the Ubuntu Keyserver
and store it in the correct format in the /etc/apt/trusted.gpg.d directory. Substitute
SIGNING_KEYwith the Fingerprint (see picture above) of the PPA signing key.

wget --quiet --output-document - \
"https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x${SIGNING_KEY,,}" \
| sudo gpg --output /etc/apt/trusted.gpg.d/launchpad-ppa.gpg --dearmor -

3. Update the package information:

19 of 102

apt

sudo apt update

apt-get

sudo apt-get update

4. Install the package from the PPA:

apt

sudo apt install PACKAGE-NAME

apt-get

sudo apt-get PACKAGE-NAME

For example, here is the full script to add the Launchpad PPA named hello of the user
dviererbe and install the hello package from it.

sudo sh -c 'cat <<EOF > /etc/apt/sources.list.d/launchpad_ppa2.sources
deb https://ppa.launchpadcontent.net/dviererbe/hello/ubuntu mantic main
deb-src https://ppa.launchpadcontent.net/dviererbe/hello/ubuntu mantic main
EOF'

SIGNING_KEY=C83A46831F1FE7AB597E95B9699E49957C59EA64
wget --quiet --output-document - \
"https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x${SIGNING_KEY,,}" \
| sudo gpg --output /etc/apt/trusted.gpg.d/launchpad-ppa.gpg --dearmor -

sudo apt update
sudo apt install hello

Download the .deb files

You can also download binary packages (.deb files) from a Launchpad PPA and install them
with a package manager (like demonstrated in the section Install .deb files (page 15)).

20 of 102

Using pull-ppa-debs

The pull-ppa-debs command downloads the .deb files of one specific binary package or all
binary packages, which are built by a source package in a Launchpad PPA.

pull-ppa-debs --ppa LP-USERNAME/PPA-NAME [--arch ARCH] PKG-NAME [SERIES|VERSION]

--ppa LP-USERNAME/PPA-NAME
The PPA to download the binary package(s) from.

LP-USERNAME
The username of the Launchpad user who owns the PPA.

PPA-NAME
The name of the PPA.

--arch ARCH
The architecture of the binary package(s) to download. Defaults to the system archi-
tecture of your host machine.

PKG-NAME
The name of the package to download. This can be the name of the source package
to download all binary packages build by the source package or just the name of one
specific binary package.

SERIES
Downloads the package with the latest version that targets the Ubuntu Series with the
specified name. Defaults to the Current Release in Development .

VERSION
The version of the package to download.

The pull-ppa-debs command is part of the ubuntu-dev-tools package. You need to install it,
before you can use it:

sudo apt install ubuntu-dev-tools

Tip

The ubuntu-dev-tools package also provides the commands:

• pull-lp-debs (to download binary packages from Launchpad) and

• pull-debian-debs (to download binary packages from the Debian archive).

For example, on an amd64 machine, the following command will download the binary pack-
age named hello and targeting amd64 from the Launchpad PPA named hello of the Launch-
pad user dviererbe:

pull-ppa-deb --ppa dviererbe/hello hello

The downloaded file will be hello_2.10-3_amd64.deb.

See the pull-pkg(1)32 manual page for more details.

32 https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

21 of 102

https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

Using the Launchpad web interface

You can download .deb files from a Launchpad PPA via the web interface like this:

1. Go to the Launchpad PPA web interface and click on the link called “View package de-
tails”:

2. Expand thedetails of thepackage youwant todownloadby clickingon the little triangle
next to the name of the package:

22 of 102

3. Download the file(s) you need from the “Package files” section by clicking on the re-
spective links:

23 of 102

Resources

• Ubuntu Server documentation – Package management33

• Ubuntu wiki – Installing Software34

• manual page add-apt-repository(1)35

• manual page pull-pkg(1)36

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.5. Run tests

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.6. Upload packages to a PPA

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

33 https://ubuntu.com/server/docs/package-management
34 https://help.ubuntu.com/community/InstallingSoftware
35 https://manpages.ubuntu.com/manpages/en/man1/add-apt-repository.1.html
36 https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

24 of 102

https://ubuntu.com/server/docs/package-management
https://help.ubuntu.com/community/InstallingSoftware
https://manpages.ubuntu.com/manpages/en/man1/add-apt-repository.1.html
https://manpages.ubuntu.com/manpages/en/man1/pull-pkg.1.html

2.1.7. Write patch files

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.8. Propose changes

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

2.1.9. Use schroots

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

25 of 102

3. Explanation
Our explanatory and conceptual guides arewritten to provide a better understanding of how
packaging works in Ubuntu. They enable you to expand your knowledge and become better
at packaging and development.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.1. Upstream and downstream
An Ubuntu installation consists of packages - copied and unpacked onto the target ma-
chine. TheUbuntuproject packages, distributes andmaintains softwareof thousandsofopen
source projects for users, ready to install. The collection of Ubuntu packages is derived from
the collection of packages maintained by the community-driven Debian project.

An important duty of an Ubuntu package Maintainer is to collaborate with the open source
projects the Ubuntu packages are derived from – especially with Debian. We do this by keep-
ing the Ubuntu copies of packages up-to-date and by sharing improvements made in Ubuntu
back up to Debian.

3.1.1. Terminology

In the context of open source software development, the analogy of a stream that carries
modifications, improvements, and code is used. It describes the relationship and direction of
changes made between projects. This stream originates (upwards) from the original project
(and related entities like Source Code, authors, and maintainers) and flows downwards to
projects (and associated entities) that depend on it.

Ubuntu delta

Ubuntu delta (noun):
A modification to an Ubuntu package that is derived from a Debian package.

26 of 102

Upstream

Upstream (noun):
A software project (and associated entities) that another software project depends on
either directly or indirectly.

Examples:

• Debian is the upstream of Ubuntu.

• Upstream is not interested in the patch.

Usage note:

• There can bemany layers. For example,Kubuntu is aflavour of Ubuntu, there-
fore Ubuntu and Debian are both upstreams of Kubuntu.

• The adjective/adverb form is much more commonly used.

Upstream (adjective, adverb):
Something (usually a code modification like a patch) that flows in the direction or is
relative to a software project closer to the original software project.

Examples:

• Debian is the upstream project of Ubuntu.

• There is a new upstream release.

• A pull request was created upstream.

• A bug was patched upstream.

upstream (verb):
Sending something (usually a patch) upstream that originated from a Fork or project
that depended on the upstream project.

Examples:

• We upstreamed the patch.

• Can you upstream the bugfix?

Downstream

Downstream (noun):
Similar to Upstream (noun): (page 27) A software project(s) (and associated entities)
that depend on another software project either directly or indirectly.

Example:

• Ubuntu is a downstream of Debian and there are many downstreams of
Ubuntu.

Usage note:

• The adjective/adverb form (page 27) is much more commonly used.

• There can bemany layers. For example,Kubuntu is a flavour of Ubuntu, there-
fore Kubuntu and Ubuntu are both downstreams of Debian.

27 of 102

Downstream (adjective, adverb):
Similar to Upstream (adjective, adverb): (page 27) Something (usually a code modifica-
tion like a patch) that flows in the direction or is relative to a software project farther
away from the original software project.

Examples:

• Ubuntu is a downstream project of Debian.

• The bug is already patched downstream.

• The bug was reported by a downstream user.

• Downstreammaintainers have submitted a bugfix.

• The change may affect downstream users.

Downstream (verb):
Similar to upstream (verb): (page 27) Sending something (usually a patch) downstream
that originated from an upstream project.

Example:

• We downstreamed the patch.

3.1.2. Why do we upstream changes?

Note

The following list does not aim for completeness. There are plenty of other good argu-
ments for why changes should be upstreamed.

• Decreasedmaintenance complexity: Think of any Ubuntu package derived from aDe-
bian package that carries a delta. Every time the Debian package gets updated, the
Ubuntu package may be subject to a merge conflict when the changes to the Debian
package get applied to the Ubuntu package. By upstreaming changes we reduce the
maintenance cost to resolve merge conflicts when they occur.

• Quality assurance and security: Any changes that get upstreamed will also be sub-
ject to the quality assurance of the upstream project and the testing coverage that the
user base of the upstream project provides. This increases the likelihood of discover-
ing regressions/bugs/unwanted behaviour (especially security-related bugs). Also, be
aware that an unpatched security vulnerability in any system could lead to the indirect
exposure of other systems.

• Mutual benefit: By syncing the Debian packages into the Ubuntu package collection,
Ubuntu benefits from the upstreammaintenance work. In exchange, UbuntuMaintain-
ers upstream changes to Debian. This results in a win-win situation where both parties
benefit from working together.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

28 of 102

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.2. Package model
Because Ubuntu is based on the community-driven Debian project, Ubuntu uses the Debian
packaging model/format.

This consists of source packages (page 29) and binary packages (page 33).

3.2.1. Source packages

A source package contains the source material used to build one or more binary packages.

A source package is composed of:

• a Debian Source Control (.dsc) file,

• one or more compressed tar files, and

• optionally additional files depending on the type and format of the source package.

The Source Control file contains metadata about the source package, for instance, a list of
additional files, name and version, list of the binary packages it produces, dependencies, a
digital signature and many more fields.

Note

The basic overview of the debian/ directory (page 53) article showcases the layout of an
unpacked source package.

Source package formats

There are multiple formats for how the source is packaged. The format of a source package
is declared in the debian/source/format file. This file should always exist. If this file can not
be found, the format 1.0 (page 32) is assumed for backwards compatibility, but lintian(1)37

will warn you about it when you try to build a source package.

Tip

We strongly recommend to use the 3.0 (quilt) (page 31) format for new packages.

You should only pick a different format if you really know what you are doing.

37 https://manpages.ubuntu.com/manpages/en/man1/lintian.1.html

29 of 102

https://manpages.ubuntu.com/manpages/en/man1/lintian.1.html

Native source packages

In most cases, a software project is packaged by external contributors called themaintainers
of the package. Because the packaging is often done by a 3rd-party (from the perspective
of the software project), the software to be packaged is often not designed to be packaged.
In these cases the source package has to do modifications to solve specific problems for its
target distribution. The source package can, in these cases, be considered as its own software
project, like a fork. Consequently, theUpstream releases and source package releases do not
always align.

Native packages almost always originate from software projects designed with Debian pack-
aging in mind and have no independent existence outside its target distribution. Conse-
quently native packages do not differentiate between Upstream releases and source pack-
age releases. Therefore, the version identifier of a native package does not have an Debian-
specific component.

For example:

• The debhelper package38 (provides tools for buildingDebian packages) is a native pack-
age fromDebian. Because it is designed with packaging in mind, the packaging specific
files are part of the original source code. The debhelper developers are alsomaintainers
of the Debian package. The Debian debhelper package gets merged into the Ubuntu
debhelper package and has therefore a ubuntu suffix in the version identifier.

• In contrast, the Ubuntu bash package39 (the default shell on Ubuntu) is NOT a native
package. The bash Software40 originates from the GNU project . The bash releases of
the GNU project project will get packaged by Debian maintainers and the Debian bash
package41 is merged into the Ubuntu bash package by Ubuntumaintainers. The Debian
and Ubuntu packages both are effectively their own separate software projects main-
tained by other people than the developers of the software that gets packaged. This is
the process how most software is packaged on Ubuntu.

Warning

Although native packages sound like the solution to use for your software project if you
want to distribute your software to Ubuntu/Debian, we strongly recommend against us-
ing native package formats for new packages. Native packages are known to cause long-
term maintenance problems.

38 https://launchpad.net/ubuntu/+source/debhelper
39 https://launchpad.net/ubuntu/+source/bash
40 https://www.gnu.org/software/bash/
41 https://tracker.debian.org/pkg/bash

30 of 102

https://launchpad.net/ubuntu/+source/debhelper
https://launchpad.net/ubuntu/+source/bash
https://www.gnu.org/software/bash/
https://tracker.debian.org/pkg/bash
https://tracker.debian.org/pkg/bash

Format: 3.0 (quilt)

A new-generation source package format that records modifications in a quilt(1)42 Patch
series within the debian/patches folder. The patches are organised as a stack, and you can
apply, unapply, and update them easily by traversing the stack (push/pop). These changes
are automatically applied during the extraction of the source package.

A source package in this format contains at least an original tarball (.orig.tar.ext where
ext can be gz, bz2, lzma or xz) and a debian tarball (.debian.tar.ext). It can also contain
additional original tarballs (.orig-component.tar.ext), where component can only contain al-
phanumeric (a-z, A-Z, 0-9) characters and hyphens (-). Optionally, each original tarball can
be accompanied by a detached signature from the upstream project (.orig.tar.ext.asc and
.orig-component.tar.ext.asc).

For example, take a look at the hello package:

pull-lp-source --download-only 'hello' '2.10-3'

Note

You need to install ubuntu-dev-tools to run the pull-lp-source:

sudo apt install ubuntu-dev-tools

When you now run ls(1)43:

ls -1 debhelper_*

you should see the following files:

• hello_2.10-3.dsc: The Debian Source Control file of the source package.

• hello_2.10.orig.tar.gz: The tarball containing the original source code of the up-
stream project.

• hello_2.10.orig.tar.gz.asc: The detached upstream signature of hello_2.10.orig.
tar.gz.

• hello_2.10-3.debian.tar.xz: The tarball containing the content of the Debian direc-
tory.

Format: 3.0 (native)

A new-generation source package format extends the native package format defined in the
format 1.0 (page 32).

A source package in this format is a tarball (.tar.extwhere ext can be gz, bz2, lzma or xz).

For example, let’s take a look at the debhelper package:

pull-lp-source --download-only 'debhelper' '13.11.6ubuntu1'

42 https://manpages.ubuntu.com/manpages/en/man1/quilt.1.html
43 https://manpages.ubuntu.com/manpages/en/man1/ls.1.html

31 of 102

https://manpages.ubuntu.com/manpages/en/man1/quilt.1.html
https://manpages.ubuntu.com/manpages/en/man1/ls.1.html

When you now run ls(1)44:

ls -1 debhelper_*

you should see the following files:

• debhelper_13.11.6ubuntu1.dsc: TheDebian Source Controlfile of the source package.

• debhelper_13.11.6ubuntu1.tar.xz: The tarball containing the source code of the
project.

Other examples of native source packages are:

• ubuntu-dev-tools45

• ubuntu-release-upgrader46

• dh-cargo47

• ubiquity48

• subiquity49

Format: 1.0

The original source package format. Nowadays, this format is rarely used.

A native source package in this format consists of a single .tar.gz file containing the source.

A non-native source package in this format consists of a .orig.tar.gz file (containing the
Upstream source) associated with a .diff.gz file (the patch containing Debian packaging
modifications). Optionally, the original tarball can be accompanied by a detached Upstream
signature .orig.tar.gz.asc.

Note

This format does not specify a patch system, which makes it harder for maintainers to
track modifications. There were multiple approaches to how packages tracked patches.
Therefore, the source packages of this format often contained a debian/README.source
file explaining how to use the patch system.

44 https://manpages.ubuntu.com/manpages/en/man1/ls.1.html
45 https://launchpad.net/ubuntu/+source/ubuntu-dev-tools
46 https://launchpad.net/ubuntu/+source/ubuntu-release-upgrader
47 https://launchpad.net/ubuntu/+source/dh-cargo
48 https://launchpad.net/ubuntu/+source/ubiquity
49 https://launchpad.net/ubuntu/+source/subiquity

32 of 102

https://manpages.ubuntu.com/manpages/en/man1/ls.1.html
https://launchpad.net/ubuntu/+source/ubuntu-dev-tools
https://launchpad.net/ubuntu/+source/ubuntu-release-upgrader
https://launchpad.net/ubuntu/+source/dh-cargo
https://launchpad.net/ubuntu/+source/ubiquity
https://launchpad.net/ubuntu/+source/subiquity

3.0 formats improvements

Some of the improvements that apply to most 3.0 formats are:

• Support for additional compression formats: bzip2, lzma and xz.

• Support for multiple Upstream tarballs.

• Supports inclusion of binary files.

• Debian-specific changes are no longer stored in a single .diff.gz.

• The Upstream tarball does not need to be repacked to strip the Debian directory.

Other formats

The following formats are rarely used, experimental and/or historical. You should only
choose these if you know what you are doing.

• 3.0 (custom): Doesn’t represent an actual source package format but can be used to
create source packages with arbitrary files.

• 3.0 (git): An experimental format to package from a git repository.

• 3.0 (bzr): An experimental format to package from a Bazaar repository.

• 2.0: The first specification of a new-generation source package format. It was never
widely adopted and eventually replaced by 3.0 (quilt) (page 31).

.changes file

Although technically not part of a source package – every time a source package is built,
a .changes file will be created alongside it. The .changes file contains metadata from the
Source Control file and other information (e.g. the latest changelog entry) about the source
package. Archive tools and Archive Administrators use this data to process changes to source
packages and determine the appropriate action to upload the source package to the Ubuntu
Archive.

3.2.2. Binary packages

A binary package is a standardised format that the PackageManager (dpkg(1)50 or apt(8)51)
can understand to install and uninstall software on a targetmachine. This simplifies distribut-
ing software to a target machine and managing the software on that machine.

A Debian binary package uses the .deb file extension and contains a set of files that will be
installed on the host system and a set of files that control how the files will be installed or
uninstalled.

50 https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
51 https://manpages.ubuntu.com/manpages/en/man8/apt.8.html

33 of 102

https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/en/man8/apt.8.html

3.2.3. Resources

• Debian policy manual v4.6.2.0 – Chapter 3. Binary packages52

• Debian policy manual v4.6.2.0 – Chapter 4. Source packages53

• The manual page dpkg-source(1)54

• Debian wiki – 3.0 source package format55

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.3. Ubuntu development process

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.4. Ubuntu releases
3.4.1. Release cadence

Ubuntu follows a strict time-based release cycle. Every sixmonths since 2004, Canonical pub-
lishes a new Ubuntu version and its set of packages are declared stable (production-quality).
Simultaneously, a new version begins development; it is given its own Code name, but also
referred to as the “Current Release in Development” or “Devel”.

52 https://www.debian.org/doc/debian-policy/ch-binary.html
53 https://www.debian.org/doc/debian-policy/ch-source.html
54 https://manpages.ubuntu.com/manpages/en/man1/dpkg-source.1.html
55 https://wiki.debian.org/Projects/DebSrc3.0

34 of 102

https://www.debian.org/doc/debian-policy/ch-binary.html
https://www.debian.org/doc/debian-policy/ch-source.html
https://manpages.ubuntu.com/manpages/en/man1/dpkg-source.1.html
https://wiki.debian.org/Projects/DebSrc3.0

LTS releases

Since 2006, every fourth release, made every two years in April, receives Long Term Support
(LTS) (page 37) for large-scale deployments. This is the origin of the term “LTS” for stable,
maintained releases.

An estimated 95% of all Ubuntu installations are LTS releases.

Note

Because of the strict time-based six months release cycle, you will only see LTS releases
in even-numbered years (e.g. 18, 20, 22) in April (04). The only exception to this rule was
Ubuntu 6.06 LTS (Dapper Drake).

Point releases

To ensure that a fresh install of an LTS release (page 35) will work on newer hardware and
not require a big download of additional updates, Canonical publishes point releases that
include all the updates made so far.

The first point release of an LTS is published three months after the initial release and re-
peated every six months at least until the next LTS is published. In practice, Canonical may
publish even more point releases for an LTS series, depending on the popularity of that LTS
series.

For example, the Ubuntu 16.04.7 LTS (Xenial Xerus) point release was published more than
four years after the initial release of Ubuntu 16.04 LTS.

Interim releases

In the years between LTS releases, Canonical also produces interim releases, sometimes also
called “regular releases”.

Many developers use interim releases because they provide newer compilers or access to
newer Kernels and newer libraries, and they are often used inside rapid DevOps processes
like CI/CD pipelines where the lifespan of an artefact is likely to be shorter than the support
period of the interim release.

Why does Ubuntu use time-based releases?

Ubuntu releases represent an aggregation of the work of thousands of independent soft-
ware projects. The time-based release process provides users with the best balance of the
latest software, tight integration, and excellent overall quality.

35 of 102

3.4.2. Ubuntu version format

YY.MM[.POINT-RELEASE] [LTS]

Ubuntu version identifier as used for Ubuntu releases consist of four components, which are:

YY
The 2-digit year number of the initial release.

MM
The 2-digit month number of the initial release.

Note

Because of the strict time-based six months release cycle, you will usually only see
releases in April (04) and October (10).

POINT-RELEASE
The point release (page 35) number starts at 1 and increments with every additional
point release.

This component is omitted for the initial release, in which case zero is assumed.

LTS
Any Ubuntu release that receives long term support will be marked with LTS (see the
release lifespan (page 37) section for more information).

Any Ubuntu release that does not receive long term support omits this component.

Examples

Version Identi-
fier

Release Date Support End of StandardSupport End of Life

22.04 LTS 21 April 2022 Long
term

April 2027 April 2032

22.04.1 LTS 11 August 2022 Long
term

April 2027 April 2032

22.10 22 October 2022 Regular July 2023 July 2023
22.04.2 LTS 13 February

2023
Long
term

April 2027 April 2032

23.04 20 April 2022 Regular January 2024 January
2024

36 of 102

3.4.3. Release lifespan

Every Ubuntu Series receives the same production-grade support quality, but the length of
time for which an Ubuntu series receives support varies.

Regular support

Interim releases (page 35) are production-quality releases and are supported for ninemonths,
with sufficient time provided for users to update, but these releases do not receive the long-
term commitment of LTS releases.

Long Term Support (LTS)

LTS releases receive five years of standard security maintenance for all packages in theMain
Component . With an Ubuntu Pro subscription, you get access to Expanded Security Mainte-
nance (ESM), covering security fixes for packages in the Universe Component . ESM also ex-
tends the lifetime of an LTS series from five years to ten years.

3.4.4. Editions

Every Ubuntu release is provided as both a Server and Desktop edition.

UbuntuDesktop provides a graphicalUser Interface (GUI) for everyday computing tasks, mak-
ing it suitable for personal computers and laptops. Ubuntu Server , on the other hand, pro-
vides a text-based User Interface (TUI) instead of a GUI , optimised for server environments,
that allows machines on the server to be run headless, focusing on server-related services
and applications, making it ideal for hosting web services, databases, and other server func-
tions.

Additionally, each release of Ubuntu is available in minimal configurations, which have the
fewest possible packages installed: available in the installer for Ubuntu Server, UbuntuDesk-
top, and as separate cloud images.

Canonical publishes Ubuntu on all major public clouds, and the latest image for each LTS ver-
sion will always include any security update provided since the LTS release date, until two
weeks prior to the image creation date.

3.4.5. Ubuntu flavours

Ubuntu flavours are Distributions of the default Ubuntu releases, which choose their own
default applications and settings. Ubuntu flavours are owned and developed bymembers of
the Ubuntu community and backed by the full Ubuntu Archive for packages and updates.

Officially recognised flavours are:

• Edubuntu56

• Kubuntu57

• Lubuntu58

56 https://edubuntu.org/
57 https://kubuntu.org/
58 https://lubuntu.me/

37 of 102

https://edubuntu.org/
https://kubuntu.org/
https://lubuntu.me/

• Ubuntu Budgie59

• Ubuntu Cinnamon60

• Ubuntu Kylin61

• Ubuntu MATE62

• Ubuntu Studio63

• Ubuntu Unity64

• Xubuntu65

In addition to the officially recognised flavours, dozens of other Linux distributions take
Ubuntu as a base for their own distinctive ideas and approaches.

3.4.6. Resources

• The Ubuntu life cycle and release cadence66

• Ubuntu wiki – List of releases67

• Ubuntu flavours68

• Ubuntu wiki – Ubuntu flavours69

• Ubuntu wiki – time-based releases70

• Ubuntu wiki – point release process71

• Ubuntu wiki – end of life process72

• Ubuntu releases73

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

59 https://ubuntubudgie.org/
60 https://ubuntucinnamon.org/
61 https://www.ubuntukylin.com/index-en.html
62 https://ubuntu-mate.org/
63 https://ubuntustudio.org/
64 https://ubuntuunity.org/
65 https://xubuntu.org/
66 https://ubuntu.com/about/release-cycle
67 https://wiki.ubuntu.com/Releases
68 https://ubuntu.com/desktop/flavours
69 https://wiki.ubuntu.com/UbuntuFlavors
70 https://wiki.ubuntu.com/TimeBasedReleases
71 https://wiki.ubuntu.com/PointReleaseProcess
72 https://wiki.ubuntu.com/EndOfLifeProcess
73 https://releases.ubuntu.com/

38 of 102

https://ubuntubudgie.org/
https://ubuntucinnamon.org/
https://www.ubuntukylin.com/index-en.html
https://ubuntu-mate.org/
https://ubuntustudio.org/
https://ubuntuunity.org/
https://xubuntu.org/
https://ubuntu.com/about/release-cycle
https://wiki.ubuntu.com/Releases
https://ubuntu.com/desktop/flavours
https://wiki.ubuntu.com/UbuntuFlavors
https://wiki.ubuntu.com/TimeBasedReleases
https://wiki.ubuntu.com/PointReleaseProcess
https://wiki.ubuntu.com/EndOfLifeProcess
https://releases.ubuntu.com/

3.5. Ubuntu package archive
Linux distributions like Ubuntu use repositories (page 39) to hold packages you can install on
target machines. Ubuntu has several repositories that anyone can access. The Ubuntu pack-
age archive hosts Debian binary packages (.deb files) and source packages (.dsc files). On
Ubuntu installations, the Ubuntu package archive is configured as the default source for the
APT package manager to download and install packages from.

Note

Some of the following terminologies have only loose or informal definitions. Also, be
aware that the terminology surrounding the Ubuntu package archive gets mixed up in
day-to-day communications. This can be confusing, but the meaning is usually evident
from the surrounding context once you are familiar with the following terminologies.

3.5.1. Repositories

In the context of packagemanagement, repositories are servers containing sets of packages
that a package manager can download and install.

This term can refer to the Ubuntu package archive as a whole or just suites (page 41), pockets
(page 40), or components (page 41).

3.5.2. Series

A series refers to the packages that target a specific Ubuntu version. A series is usually re-
ferred to by its code name.

Examples of series are: mantic, lunar, jammy, focal, bionic, xenial, trusty.

Note

In practice, the terms “Ubuntu series” and “Ubuntu release” are often used synonymously
or are mistaken for each other. There is technically a difference; for example, an LTS ver-
sion usually has an initial release (e.g. 22.04 LTS) and multiple point releases (e.g. 22.04.1
LTS, 22.04.2 LTS), which are all part of the same series (e.g. jammy).

39 of 102

3.5.3. Pockets

Pockets are package sub-repositories within the Ubuntu package archive. Every Ubuntu se-
ries has the following pockets:

release

This pocket contains the packages that an Ubuntu series was initially releasedwith. After the
initial release of an Ubuntu series, the packages in this pocket are not updated (not even for
security-related fixes).

security

This pocket contains security-related updates to packages in the release (page 40) pocket.

updates

This pocket contains non-security-related updates to packages in the release (page 40)
pocket.

proposed

This pocket is a staging environment theUbuntu community canopt into, to verify the stability
of any updates before they get deployed to a broader range of consumers.

• Before the initial release of an Ubuntu series, this pocket contains non-security-related
updates to packages in the release (page 40) pocket before they get uploaded to the
release (page 40) pocket.

• After the initial release of an Ubuntu series, this pocket contains non-security-related
updates to packages in the release (page 40) pocket before they get uploaded to the
updates (page 40) pocket.

backports

This pocket contains packages the Ubuntu series was initially NOT released with.

The backports article (page 50) provides more information on backporting software.

Important

The backports pocket does not come with any security support guarantee. The Ubuntu
Security Teamdoes not update packages in the backports pocket. TheUbuntu community
is responsible for maintaining packages in backports with later patches for bug fixes and
security updates.

40 of 102

3.5.4. Suite

A combination of a series and a pocket. For example:

Suite Series Pocket
jammy jammy release (page 40)
jammy-security jammy security (page 40)
jammy-updates jammy updates (page 40)
jammy-proposed jammy proposed (page 40)
jammy-backports jammy backports (page 40)

You can see all active suites74 in the archive.

Note

The devel series always mirrors the series with the code name of the current release in
development .

3.5.5. Components

Components are logical subdivisions or namespaces of the packages in a suite. TheAPT pack-
age manager can subscribe to the individual components of a suite.

The packages of anUbuntu series are categorised according towhether they areOpen Source
Software or Closed Source Software, and whether or not they are part of the base packages
for a given series. On this basis they are sorted into the components “main”, “restricted”,
“universe”, or “multiverse”, as shown in the following table:

Open source software Closed source software
Ubuntu base packages main (page 42) restricted (page 42)
Community packages universe (page 42) multiverse (page 42)

Canonical maintains the base packages and provides security updates. See release lifespan
(page 37) for more information about the official support provided by Canonical.

For example, if you look into any of the Pockets (page 40) of the devel series
(devel-release75, devel-updates76, devel-security77, devel-proposed78, devel-backports79)
you will see the four components (main, restricted, universe, multiverse) as directories.

74 http://archive.ubuntu.com/ubuntu/dists/
75 http://archive.ubuntu.com/ubuntu/dists/devel/
76 http://archive.ubuntu.com/ubuntu/dists/devel-updates/
77 http://archive.ubuntu.com/ubuntu/dists/devel-security/
78 http://archive.ubuntu.com/ubuntu/dists/devel-proposed/
79 http://archive.ubuntu.com/ubuntu/dists/devel-backports/

41 of 102

http://archive.ubuntu.com/ubuntu/dists/
http://archive.ubuntu.com/ubuntu/dists/devel/
http://archive.ubuntu.com/ubuntu/dists/devel-updates/
http://archive.ubuntu.com/ubuntu/dists/devel-security/
http://archive.ubuntu.com/ubuntu/dists/devel-proposed/
http://archive.ubuntu.com/ubuntu/dists/devel-backports/

main

This component contains open source software packages for a given series that are sup-
ported and maintained by Canonical.

restricted

This component contains closed source software packages for a given series that are sup-
ported and maintained by Canonical. Packages in this component are mostly proprietary
drivers for devices and similar.

universe

This component contains open source software packages for a given series that are sup-
ported and maintained by the Ubuntu community.

multiverse

This component contains packages (for a given series) of closed source software, or open
source software restricted by copyright or legal issues. These packages are maintained and
supported by the Ubuntu community, but because of the restrictions, patching bugs or up-
dates may not be possible.

3.5.6. Mirrors

Every day, hundreds of thousands of people want to download and install packages from the
Ubuntu package archive. To provide a good user experience, the content of http://archive.
ubuntu.com/ubuntu gets mirrored (replicated and kept in sync) by other servers to distribute
network traffic, reduce latency, and provide redundancy, which ensures high availability and
fault tolerance.

Here is a complete list of officially recognised Ubuntu package archive mirrors80.

Note

There are also mirrors for the Ubuntu ISO images (also called “CD images”, because ISO
images can be downloaded and burned to a CD to make installation disks.)

You can find a complete list of officially recognised Ubuntu CD mirrors81.

80 https://launchpad.net/ubuntu/+archivemirrors
81 https://launchpad.net/ubuntu/+cdmirrors

42 of 102

https://launchpad.net/ubuntu/+archivemirrors
https://launchpad.net/ubuntu/+cdmirrors

Country mirrors

Ubuntu package archive mirrors that provide a very reliable service in a country can request
to be the official country mirror for that country. Ubuntu installations are configured by
default to use the country mirror for their selected country.

Country mirrors are accessible via the domain name format:

<country-code>.archive.ubuntu.com

You can see which mirror is the country mirror by doing a simple DNS lookup. For example:

Finland (FI)

dig fi.archive.ubuntu.com +noall +answer

fi.archive.ubuntu.com. 332 IN CNAME mirrors.nic.funet.fi.
mirrors.nic.funet.fi. 332 IN A 193.166.3.5

Therefore, mirrors.nic.funet.fi is Finland’s country mirror.

Tunisia (TN)

Tunisia does not have any third-party mirrors in its country. Therefore the Tunisia country
mirror is just the primary Ubuntu package archive server (archive.ubuntu.com).

dig tn.archive.ubuntu.com +noall +answer

tn.archive.ubuntu.com. 60 IN A 185.125.190.36
tn.archive.ubuntu.com. 60 IN A 91.189.91.83
tn.archive.ubuntu.com. 60 IN A 91.189.91.82
tn.archive.ubuntu.com. 60 IN A 185.125.190.39
tn.archive.ubuntu.com. 60 IN A 91.189.91.81

which are just the archive.ubuntu.com IP addresses:

dig archive.ubuntu.com +noall +answer

archive.ubuntu.com. 1 IN A 185.125.190.39
archive.ubuntu.com. 1 IN A 185.125.190.36
archive.ubuntu.com. 1 IN A 91.189.91.83
archive.ubuntu.com. 1 IN A 91.189.91.81
archive.ubuntu.com. 1 IN A 91.189.91.82

43 of 102

3.5.7. Package uploads

Ubuntu encourages contributions from any person in the wider community. However, direct
uploading to the Ubuntu package archive is restricted. These general contributions need to
be reviewed and uploaded by a sponsor .

See our article on sponsoring (page 49) that explains this process in more detail.

3.5.8. Security update propagation

This section is a niche technical explanation. You can skip it if you don’t feel that this is cur-
rently relevant for you.

Because security updates contain fixes for Common Vulnerabilities and Exposures (CVE), it is
mission critical to distribute them as fast as possible to end users. Mirrors are a technical
burden in this case, because there is a delay between the synchronisation of amirror and the
primary Ubuntu package archive server.

In the worst case a bad actor gets informed about a CVE and can use it, before the update
reaches a target machine.

Therefore the APT package manager is configured by default (on Ubuntu) to also check for
updates from security.ubuntu.com. Security updates will get uploaded here first. If a mirror
does not provide the update yet a client will download it from security.ubuntu.com instead
from the mirror.

You can see this yourself if you lookwhat the sources.list(5)82 file contains on your Ubuntu
machine:

cat /etc/apt/sources.list

At the end of the file you will find something similar to this:

deb http://security.ubuntu.com/ubuntu SERIES-security main restricted
deb-src http://security.ubuntu.com/ubuntu SERIES-security main restricted
deb http://security.ubuntu.com/ubuntu SERIES-security universe
deb-src http://security.ubuntu.com/ubuntu SERIES-security universe
deb http://security.ubuntu.com/ubuntu SERIES-security multiverse
deb-src http://security.ubuntu.com/ubuntu SERIES-security multiverse

Because the sources.list(5)83 file is read from top to bottom, the APT package manager
will download updates from the mirror first and only download it from security.ubuntu.com
if the mirror has an older version, because the mirror has not synchronised with the primary
Ubuntu package archive server yet.

security.ubuntu.com points to the same servers as archive.ubuntu.com if you do a DNS
lookup. It is used in the sources.list(5)84 file for the security pocket to prevent a user/script
from accidentally changing it to a mirror.

82 https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
83 https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
84 https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html

44 of 102

https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/en/man5/sources.list.5.html

3.5.9. Resources

• Ubuntu release cycle85

• Ubuntu blog – Ubuntu updates, releases and repositories explained86

• Ubuntu Server docs – package management87

• Ubuntu wiki – mirrors88

• Ubuntu help – repositories89

• Ubuntu help – repositories/Ubuntu90

Landscape repositories

Landscape91 is a management and administration tool for Ubuntu. Landscape allows you to
mirrorAPT repositories like theUbuntu package archive. Although it is not directly related to
the Ubuntu package archive it can be educational to understand how APT repositories work
in general.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.6. Launchpad
Launchpad is a software collaboration and hosting platform similar to platforms like
GitHub92. Launchpad is also the platform where the Ubuntu project lives. This is one of the
major differences between the Ubuntu and Debian infrastructure.

Note

Although the Ubuntu project is probably the largest user base of Launchpad, Launchpad
can be used by anyone.

Launchpad features, among others, are:

85 https://ubuntu.com/about/release-cycle
86 https://ubuntu.com/blog/ubuntu-updates-releases-and-repositories-explained
87 https://ubuntu.com/server/docs/package-management
88 https://wiki.ubuntu.com/Mirrors
89 https://help.ubuntu.com/community/Repositories
90 https://help.ubuntu.com/community/Repositories/Ubuntu
91 https://ubuntu.com/landscape
92 https://github.com/

45 of 102

https://ubuntu.com/about/release-cycle
https://ubuntu.com/blog/ubuntu-updates-releases-and-repositories-explained
https://ubuntu.com/server/docs/package-management
https://wiki.ubuntu.com/Mirrors
https://help.ubuntu.com/community/Repositories
https://help.ubuntu.com/community/Repositories/Ubuntu
https://ubuntu.com/landscape
https://github.com/

• Bugs: Bug Tracking System

• Code: source code hosting with Git or Bazaar , version control and code review features

• Answers: community support site and knowledge base

• Translations: collaboration platform for localising software

• Blueprints: feature planning and specification tracking

• Ubuntu package building and hosting

• Team/Group management

While platforms like GitHub put users and groups at the top level, Launchpad puts projects
at the top level. If you take Ubuntu as an example, you can see that you can access it at
the top level: https://launchpad.net/ubuntu. Users and groups begin with a ~, for instance
https://launchpad.net/~ubuntu-foundations-team.

3.6.1. Why not use platforms like GitHub?

Although Launchpad’s UI and UX are a bit dated, Launchpad offers an unparalleled Ubuntu
package building and hosting infrastructure that no other platform offers. Even simple re-
quirements like building for architectures like PowerPC , s390x , or RISC-V can not be fulfilled
by GitHub or similar platforms.

3.6.2. Personal Package Archive (PPA)

Launchpad PPA repositories allow you to build installable Ubuntu packages for multiple ar-
chitectures and to host them in your own software repository .

Using a PPA is straightforward; you don’t need the approval of anyone, therefore users have
to enable it manually. See how to Install packages from a PPA (page 18).

This is useful when you want to test a change, or to show others that a change builds suc-
cessfully or is installable. Some people have special permission to trigger the autopkgtests
for packages in a PPA.

Tip

You can ask in the IRC channel #ubuntu-devel if someone can trigger autopkgtests in your
PPA if you don’t have the permission.

3.6.3. git-based workflow for the development of Ubuntu source
packages

Launchpad hosts a git-ubuntu (page 55) importer service that maintains a view of the entire
packaging version history of Ubuntu source packages using git repositories with a common
branching and tagging scheme. The git-ubuntu CLI provides tooling and automation that
understands these repositories to make the development of Ubuntu itself easier.

You can see theweb-viewof these repositorieswhenyou clickon the “Code” tabof any source
package on Launchpad, for example, in the “hello” source package93 as shown in the follow-
ing screenshot:

93 https://code.launchpad.net/ubuntu/+source/hello

46 of 102

https://code.launchpad.net/ubuntu/+source/hello

3.6.4. Text markup

Launchpad has some markup features that you can use when you e.g. report bugs, write
comments, create merge proposals.

See the Launchpad text markup (page 56) reference for more details.

3.6.5. Getting help

If you need help with Launchpad you can choose any of the following methods:

IRC chat rooms

On the irc.libera.chat IRC server you will find the #launchpad channel, where you can ask
the Launchpad team and the Ubuntu community for help.

Mailing lists

If you prefer to ask for help via email, you can write to the launchpad-users94 mailing list
(launchpad-users@lists.launchpad.net).

94 https://launchpad.net/~launchpad-users

47 of 102

https://launchpad.net/~launchpad-users

Ask a question

As mentioned above, Launchpad has a community FAQ feature95 (called “Answers”) where
you can see other people’s questions or ask one yourself. Use can use the Answers feature
of the Launchpad project on Launchpad itself.

Report a bug

If you encounter any bug related to Launchpad, you can submit a bug report to the Bug Track-
ing System of the Launchpad project on Launchpad itself96.

3.6.6. Staging environment

Before new features are deployed to the production environment they get deployed to a
staging environment97 where the changes can get tested.

You can use the staging environment, to try out Launchpad features.

3.6.7. API

Launchpad has a web API that you can use to interact with its services. This makes it easy for
developer communities like Ubuntu’s to automate specific workflows.

You can find the reference documentation for the web API98 on Launchpad.

The Launchpad team even created an open source Python library, launchpadlib99.

3.6.8. Resources

• Launchpad home page100

• The Launchpad software project on Launchpad itself101

– Launchpad bug tracker102

– Launchpad questions and answers103

• Launchpad wiki104

• Launchpad development wiki105

• Launchpad blog106

• git-ubuntu (page 55)

95 https://answers.launchpad.net/launchpad
96 https://bugs.launchpad.net/launchpad
97 https://qastaging.launchpad.net/
98 https://launchpad.net/+apidoc/
99 https://help.launchpad.net/API/launchpadlib

100 https://launchpad.net
101 https://launchpad.net/launchpad
102 https://bugs.launchpad.net/launchpad
103 https://answers.launchpad.net/launchpad
104 https://help.launchpad.net/
105 https://dev.launchpad.net/
106 https://blog.launchpad.net/

48 of 102

https://answers.launchpad.net/launchpad
https://bugs.launchpad.net/launchpad
https://qastaging.launchpad.net/
https://qastaging.launchpad.net/
https://launchpad.net/+apidoc/
https://help.launchpad.net/API/launchpadlib
https://launchpad.net
https://launchpad.net/launchpad
https://bugs.launchpad.net/launchpad
https://answers.launchpad.net/launchpad
https://help.launchpad.net/
https://dev.launchpad.net/
https://blog.launchpad.net/

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.7. Sponsoring

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.8. Proposed migrations

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.9. Stable Release Updates (SRU)

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

49 of 102

3.10. Debian syncs

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.11. Debian merges

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.12. Transitions

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.13. Backports

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

50 of 102

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

3.14. Main Inclusion Review (MIR)

Important

Do not confuse the abbreviationMIR with the display server107 Mir.

Packages in Main and Restricted are officially maintained, supported and recommended by
the Ubuntu project. Canonical’s support services applies to these packages, which include
security updates and certain SLA guarantees when bugs are reported and technical support
is requested.

Therefore, special consideration is necessary before adding new packages to Main or Re-
stricted. The UbuntuMIR Team reviews packages for promotion:

• from Universe toMain, or

• fromMultiverse to Restricted .

This review process is calledMain Inclusion Review (MIR).

3.14.1. Submit a package for Main Inclusion Review

The Main Inclusion Review documentation108 by the MIR team provides instructions on how
to apply for Main Inclusion Review for a package. The documentation even contains details
of how the application gets reviewed by the MIR team.

Note

The guidelines and review process is constantly evolving. Therefore you should re-read
the MIR documentation even if you have submitted a package for Main Inclusion Review
in the past.

The MIR documentation is also a living document. External contributions, suggestions,
discussions or questions about the process are always welcome.

3.14.2. MIR team weekly meeting

The MIR team holds weekly meetings every Tuesday at 16:30 CET on the IRC server irc.
libera.chat in the #ubuntu-meeting channel. You can follow these instructions109 on how to
connect to irc.libera.chat.

The purpose of the meeting is:

• to distribute the workload fairly between the members of the MIR team

• to provide a timely response to reporters of MIR applications

107 https://mir-server.io/
108 https://github.com/canonical/ubuntu-mir
109 https://libera.chat/guides/connect

51 of 102

https://mir-server.io/
https://github.com/canonical/ubuntu-mir
https://libera.chat/guides/connect

• detection and discussion of any current or complex cases

You should attend these meetings if you submit an MIR request until it is approved or re-
jected.

Usually, the amount of MIR requests increases during the six-month development period of
a new Ubuntu release. Especially right before the various feature freezes (see Ubuntu devel-
opment process (page 34)), Ubuntu developers submit MIR requests they have been working
on before they have to submit an exception request. As a result, the meetings tend to be
quieter, and response times to MIR requests are, on average, faster after the release of a
new Ubuntu version.

3.14.3. Resources

• Main Inclusion Review documentation110 by the MIR team

– MIR process overview111

– MIR application template112

– Helper tools113

– Bug lists114

– Pull requests115

– Issues116

• MIR team on Launchpad : ~ubuntu-mir117

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

110 https://github.com/canonical/ubuntu-mir
111 https://github.com/canonical/ubuntu-mir#process-states
112 https://github.com/canonical/ubuntu-mir#main-inclusion-requirements
113 https://github.com/canonical/ubuntu-mir#tools
114 https://github.com/canonical/ubuntu-mir#bug-lists
115 https://github.com/canonical/ubuntu-mir/pulls
116 https://github.com/canonical/ubuntu-mir/issues
117 https://launchpad.net/~ubuntu-mir

52 of 102

https://github.com/canonical/ubuntu-mir
https://github.com/canonical/ubuntu-mir#process-states
https://github.com/canonical/ubuntu-mir#main-inclusion-requirements
https://github.com/canonical/ubuntu-mir#tools
https://github.com/canonical/ubuntu-mir#bug-lists
https://github.com/canonical/ubuntu-mir/pulls
https://github.com/canonical/ubuntu-mir/issues
https://launchpad.net/~ubuntu-mir

4. Reference
Our reference section contains support information related to packaging in Ubuntu. This
includes details on the network requirements, API definitions, support matrices, and so on.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.1. Basic overview of the debian/ directory

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.2. Supported architectures

Identifier Alternative Architecture Names Endianness Architecture Type
amd64 x86-64, x86_64, x64, AMD64, Intel 64 Little-Endian CISC
i3861 Intel x86, 80x86 Little-Endian CISC
arm64 ARM64, ARMv8, AArch64 Little-Endian RISC
armhf ARM32, ARMv7, AArch32, ARM Hard Float Little-Endian RISC
ppc64el PowerPC64 Little-Endian Little-Endian RISC
powerpc PowerPC (32-bit) Big-Endian RISC
s390x IBM System z, S/390, S390X Big-Endian CISC
riscv64 RISC-V (64-bit) Little-Endian RISC

1 i386 is a partial-port of Ubuntu, which is supported as a multi-arch supplementary architecture. There is no
kernel, no installers, and no bootloaders for i386, therefore it cannot be booted as a pure i386 installation. You
have to crossbuild i386 or build in a i386 chroot on a amd64 host.

53 of 102

4.2.1. Other architectures

Ubuntu doesn’t currently support any other architectures. This doesn’t mean that Ubuntu
won’t run on other architectures – in fact it is entirely possible for it to install without a prob-
lem, because Ubuntu is based on the Debian distribution, which has support for eight addi-
tional architectures (see Debian Supported Architectures118).

However, if you run into problems, the Ubuntu community may not be able to help you.

4.2.2. Resources

• Ubuntu Wiki – Supported Architectures119

• Ubuntu Wiki – i386120

• Statement on 32-bit i386 packages for Ubuntu 19.10 and 20.04 LTS121

• Ubuntu Wiki – S390X122

• Ubuntu Downloads123

• Endianness124

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.3. Package tests

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

118 https://wiki.debian.org/SupportedArchitectures
119 https://help.ubuntu.com/community/SupportedArchitectures
120 https://wiki.ubuntu.com/i386
121 https://canonical.com/blog/statement-on-32-bit-i386-packages-for-ubuntu-19-10-and-20-04-lts
122 https://wiki.ubuntu.com/S390X
123 https://ubuntu.com/download
124 https://en.wikipedia.org/wiki/Endianness

54 of 102

https://wiki.debian.org/SupportedArchitectures
https://help.ubuntu.com/community/SupportedArchitectures
https://wiki.ubuntu.com/i386
https://canonical.com/blog/statement-on-32-bit-i386-packages-for-ubuntu-19-10-and-20-04-lts
https://wiki.ubuntu.com/S390X
https://ubuntu.com/download
https://en.wikipedia.org/wiki/Endianness

4.4. Package version format

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.5. git-ubuntu

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.6. APT

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.7. Debian policy

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

55 of 102

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.8. Filesystem Hierarchy Standard (FHS)

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.9. (To be) Outdated packaging tools

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.10. Launchpad text markup
Any textarea125 input field on Launchpad will process the entered text to recognise certain
patterns to enhance the resulting displayed output.

Examples of textareas where the Launchpad text markup is accepted are:

125 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

56 of 102

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

Bug reporting

57 of 102

Bug report descriptions and comments

Merge proposal creation

Comment for a Merge proposal

58 of 102

Profile description

PPA description

Unlike platforms like GitHub, Launchpad unfortunately only recognises a very limited set of
markup patterns when youwrite comments. Themost useful pattern are documented in this
article.

59 of 102

Note

Support for awider rangeofmarkuppatterns is a very commonandold request/wish; take
for example LP: #391780126.

You can “upvote” (mark yourself as affected) or leave a comment on this bug report to
show your support for the feature request.

Reminder: Please stay civil! The Launchpad team has only limited resources.

4.10.1. Referencing Launchpad bugs

It is very common to refer to a specific Launchpad bug e.g. to point other people to a bug
during a discussion.

Pattern

The following pattern is used by Launchpad to detect bug references:

LP: #<LP-Bug-Number>[, #<LP-Bug-Number>]...

This pattern is case invariant, and the amount of blank space can be variable, but if you place
blank space anywhere else, the regular expression used by Launchpad might not parse the
bug reference correctly.

Note

This pattern is also commonly used outside of Launchpad e.g. on IRC , in source package
changelogs or on Discourse.

126 https://bugs.launchpad.net/launchpad/+bug/391780

60 of 102

https://bugs.launchpad.net/launchpad/+bug/391780

Examples

The following table shows examples how text entered into a text input fieldwill be displayed
on Launchpad:

61 of 102

Input Result Comment

LP: #1

LP: #1127 references Launchpad bug
with the number 1

(LP: #1)

(LP: #1128) a bug reference can be sur-
rounded by brackets

LP: #1, #2.

LP: #1129, #2130.

there can be multiple bug
references
separated by a ,

LP:
#1,
#2,
#3,
#4

LP:
#1131,
#2132,
#3133,
#4134

the amount of blank space
can be variable and
a new-line will not disrupt
this pattern

lp: #1

lp: #1135 the pattern is case invariant

(lp: #1)

(lp: #1136) the pattern is case invariant

lp: #1, #2.

lp: #1137, #2138. the pattern is case invariant

LP #1

LP #1 the : is strictly needed

LP: #1 , #2

LP: #1139 , #2

if you place blank space
anywhere else the
regular expressionmight not
parse the
input correctly

LP: #1, #2,

#3

LP: #1140, #2141,

#3

an empty new-line will
interrupt the pattern,
but a trailing ,will not

62 of 102

https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/3
https://bugs.launchpad.net/ubuntu/+bug/4
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2

4.10.2. Blank spaces

Launchpad will:

• cut off any blank space to the right,

• keep any blank space to the left, and

• reduce any blank space between non-blank-space characters to just one (this includes
new-line characters as well).

Note

Technically Launchpad passes blank space through and the browser just ignores the blank
space.

Warning

Because of the behaviour described above youwill have a hard time trying towrite a table
or long chunks of blank space between two sections.

The following table shows examples how text entered into a text input field will be dis-
played on Launchpad:

127 https://bugs.launchpad.net/ubuntu/+bug/1
128 https://bugs.launchpad.net/ubuntu/+bug/1
129 https://bugs.launchpad.net/ubuntu/+bug/1
130 https://bugs.launchpad.net/ubuntu/+bug/2
131 https://bugs.launchpad.net/ubuntu/+bug/1
132 https://bugs.launchpad.net/ubuntu/+bug/2
133 https://bugs.launchpad.net/ubuntu/+bug/3
134 https://bugs.launchpad.net/ubuntu/+bug/4
135 https://bugs.launchpad.net/ubuntu/+bug/1
136 https://bugs.launchpad.net/ubuntu/+bug/1
137 https://bugs.launchpad.net/ubuntu/+bug/1
138 https://bugs.launchpad.net/ubuntu/+bug/2
139 https://bugs.launchpad.net/ubuntu/+bug/1
140 https://bugs.launchpad.net/ubuntu/+bug/1
141 https://bugs.launchpad.net/ubuntu/+bug/2

63 of 102

Input Result

| Column 1 | Column 2 | Column 3 |
|------------+----------+-------------|
Example	table	text
Example	table	text
Example	table	text

| Column 1 | Column 2 | Column 3 |
|------------+----------+-------------|
Example	table	text
Example	table	text
Example	table	text

Here are two paragraphs with lots
of blank space between them.

But they're still just two paragraphs

Here are two paragraphs with lots of
blank space between them.

But they’re still just two paragraphs

4.10.3. URI addresses

Launchpad can recognise http, https, ftp, sftp, mailto, news, irc and jabber URIs.

Note

tel, urn, telnet, ldap URI , relative URLs like example.com and email addresses like
test@example.com are NOT recognised.

Examples

The following examples show how text entered into a text input field will be displayed on
Launchpad:

Input
http://localhost:8086/example/sample.html

Result http://localhost:8086/example/sample.
html

Input
http://localhost:8086/example/sample.html

Result http://localhost:8086/example/sample.
html

64 of 102

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
ftp://localhost:8086/example/sample.html

Result ftp://localhost:8086/example/sample.html

Input
sftp://localhost:8086/example/sample.html.

Result sftp://localhost:8086/example/sample.
html.

Input
http://localhost:8086/example/sample.html;

Result http://localhost:8086/example/sample.
html;

Input
news://localhost:8086/example/sample.html:

Result news://localhost:8086/example/sample.
html:

Input
http://localhost:8086/example/sample.html?

Result http://localhost:8086/example/sample.
html?

Input
http://localhost:8086/example/sample.html,

Result http://localhost:8086/example/sample.
html,

Input
<http://localhost:8086/example/sample.
html>

Result <http://localhost:8086/example/sample.
html>

65 of 102

ftp://localhost:8086/example/sample.html
sftp://localhost:8086/example/sample.html
sftp://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
news://localhost:8086/example/sample.html
news://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
<http://localhost:8086/example/sample.
html>,

Result <http://localhost:8086/example/sample.
html>,

Input
<http://localhost:8086/example/sample.
html>.

Result <http://localhost:8086/example/sample.
html>.

Input
<http://localhost:8086/example/sample.
html>;

Result <http://localhost:8086/example/sample.
html>;

Input
<http://localhost:8086/example/sample.
html>:

Result <http://localhost:8086/example/sample.
html>:

Input
<http://localhost:8086/example/sample.
html>?

Result <http://localhost:8086/example/sample.
html>?

Input
(http://localhost:8086/example/sample.
html)

Result (http://localhost:8086/example/sample.
html)

66 of 102

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
(http://localhost:8086/example/sample.
html),

Result (http://localhost:8086/example/sample.
html),

Input
(http://localhost:8086/example/sample.
html).

Result (http://localhost:8086/example/sample.
html).

Input
(http://localhost:8086/example/sample.
html);

Result (http://localhost:8086/example/sample.
html);

Input
(http://localhost:8086/example/sample.
html):

Result (http://localhost:8086/example/sample.
html):

Input
http://localhost/example/sample.html?a=b&
b=a

Result http://localhost/example/sample.html?a=
b&b=a

Input
http://localhost/example/sample.html?a=b&
b=a.

Result http://localhost/example/sample.html?a=
b&b=a.

67 of 102

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a

Input
http://localhost/example/sample.html?a=b&
b=a,

Result http://localhost/example/sample.html?a=
b&b=a,

Input
http://localhost/example/sample.html?a=b&
b=a;

Result http://localhost/example/sample.html?a=
b&b=a;

Input
http://localhost/example/sample.html?a=b&
b=a:

Result http://localhost/example/sample.html?a=
b&b=a:

Input
http://localhost/example/sample.html?a=b&
b=a:b;c@d_e%f~g#h,j!k-l+m$n*o'p

Result http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-
l+m$n*o’p142

Input
http://www.example.com/test/
example(parentheses).html

Result http://www.example.com/test/
example(parentheses).html

Input
http://www.example.com/test/example-dash.
html

Result http://www.example.com/test/
example-dash.html

142 http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect\TU\textdollarn*o'p

68 of 102

http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect \TU\textdollar n*o'p
http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect \TU\textdollar n*o'p
http://www.example.com/test/example(parentheses).html
http://www.example.com/test/example(parentheses).html
http://www.example.com/test/example-dash.html
http://www.example.com/test/example-dash.html

Input
http://www.example.com/test/example_
underscore.html

Result http://www.example.com/test/example_
underscore.html

Input
http://www.example.com/test/example.
period.x.html

Result http://www.example.com/test/example.
period.x.html

Input
http://www.example.com/test/example!
exclamation.html

Result http://www.example.com/test/example!
exclamation.html

Input
http://www.example.com/test/example~tilde.
html

Result http://www.example.com/test/
example~tilde.html

Input
http://www.example.com/test/
example*asterisk.html

Result http://www.example.com/test/
example*asterisk.html

Input
irc://chat.freenode.net/launchpad

Result irc://chat.freenode.net/launchpad

Input
irc://chat.freenode.net/%23launchpad,
isserver

Result irc://chat.freenode.net/%23launchpad,
isserver

69 of 102

http://www.example.com/test/example_underscore.html
http://www.example.com/test/example_underscore.html
http://www.example.com/test/example.period.x.html
http://www.example.com/test/example.period.x.html
http://www.example.com/test/example!exclamation.html
http://www.example.com/test/example!exclamation.html
http://www.example.com/test/example~tilde.html
http://www.example.com/test/example~tilde.html
http://www.example.com/test/example*asterisk.html
http://www.example.com/test/example*asterisk.html
irc://chat.freenode.net/launchpad
irc://chat.freenode.net/%23launchpad,isserver
irc://chat.freenode.net/%23launchpad,isserver

Input
mailto:noreply@launchpad.net

Result mailto:noreply@launchpad.net143

Input
jabber:noreply@launchpad.net

Result jabber:noreply@launchpad.net

Input
http://localhost/foo?xxx&

Result http://localhost/foo?xxx&

Input
http://localhost?testing=[square-brackets-
in-query]

Result http://localhost?testing=
{[}square-brackets-in-query{]}

4.10.4. Removal of “

If the entire comment is encapsulated in “ like this Launchpad will remove the “.

The following table shows an example how text entered into a text input field will be dis-
played on Launchpad:

Input Result

"Content"

Content

4.10.5. Resources

• Comments (help.launchpad.net)144

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

143 noreply@launchpad.net
144 https://help.launchpad.net/Comments

70 of 102

mailto:noreply@launchpad.net
jabber:noreply@launchpad.net
http://localhost/foo?xxx&
http://localhost?testing={[}square-brackets-in-query{]}
http://localhost?testing={[}square-brackets-in-query{]}
https://help.launchpad.net/Comments

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

4.11. Glossary
80x86

See i386

AA
Abbreviation for Archive Admin

AArch32
See armhf

AArch64
See arm64

ABI
Abbreviation for Application Binary Interface

Warning

Do not confuse with Application Programming Interface (API)!

amd64
CPU Architecture identifier for the AMD64 (also known as x64, x86-64, x86_64, and Intel
64) architecture; a 64-bit version of the i386 instruction set.

See also: X86-64 (Wikipedia)145

ANAIS
Abbreviation for Architecture Not Allowed In Source

API
Abbreviation for Application Programming Interface

Warning

Do not confuse with Application Binary Interface (ABI)!

Application Binary Interface
Defines how two binary applications interface eachother like calling conventions, data
type sizes, and system call interfaces, ensuring compatibility and proper communica-
tion between different parts of a software system, such as libraries, executables, and
the Operating System. Application Binary Interfaces are crucial for enabling software
components compiled on different systems to work together seamlessly.

145 https://en.wikipedia.org/wiki/X86-64

71 of 102

https://en.wikipedia.org/wiki/X86-64

See also: Kernel ABI (Ubuntu Wiki)146, Application binary interface (Wikipedia)147

Warning

Do not confuse with Application Programming Interface (API)!

Application Programming Interface
An Application Programming Interface (API), is a set of rules that allows different soft-
ware applications to communicate with each other. It defines the methods and data
formats that applications can use to request and exchange information, perform spe-
cific tasks, or access the functionality of another software component, such as an Op-
erating System, library, or online service. APIs enable developers to build upon exist-
ing software and create new applications by providing a standardized way to interact
with external systems, services, or libraries without needing to understand their inter-
nal workings.

Warning

Do not confuse with Application Binary Interface (ABI)!

APT
Abbreviation for Advanced Package Manager.

See: APT (page 55)

Architecture
Within the context of Ubuntu, this refers to the system architecture (more specifically,
the CPU architecture and its instruction set) an application is designed for.

See also: Supported architectures (page 53), Computer Architecture (Wikipedia)148

Architecture Not Allowed In Source
Work in Progress

Archive
See Ubuntu Archive

Archive Admin
An administrator that is responsible for maintenance tasks of the Ubuntu Package
Archive, including processing of new Packages, migration of Packages between Com-
ponents, and other administrative matters.

See also: “Ubuntu Package Archive Administrators” team on Launchpad149

Archive Mirror
AMirror of the Ubuntu Archive.

See the sectionMirrors (page 42) for more details.

146 https://wiki.ubuntu.com/KernelTeam/BuildSystem/ABI
147 https://en.wikipedia.org/wiki/Application_binary_interface
148 https://en.wikipedia.org/wiki/Computer_architecture
149 https://launchpad.net/~ubuntu-archive

72 of 102

https://wiki.ubuntu.com/KernelTeam/BuildSystem/ABI
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Computer_architecture
https://launchpad.net/~ubuntu-archive

ARM
ARM (formerly an acronym for Advanced RISC Machines and originally Acorn RISC Ma-
chine) is a widely used family of RISC CPU Architectures known for their efficiency, low
power consumption, and versatility, which are widely used in Embedded Systems and
mobile devices.

Notable examples are arm64 and armhf .

See also: ARM architecture family (Wikipedia)150

ARM Hard Float
See armhf

arm64
CPU Architecture identifier (also known as ARM64, ARMv8, and AArch64) for a 64-bit
ARM Architecture variant.

See also: AArch64 (Wikipedia)151

armhf
CPU Architecture identifier (also known as ARM32, ARMv7 , AArch32, and ARM Hard
Float) for a 32-bit ARM Architecture variant.

See also: AArch64 (Wikipedia)152

ARMv7
See armhf

ARMv8
See arm64

autopkgtest
Work in Progress

Backports
Work in Progress

Bazaar
A distributed Version Control System to collaborate on software development, that was
developed by Canonical and is part of the GNU system.

Bazaar as a Canonical project is discontinued. Development has been carried forward
in the community as Breezy .

See also: Bazaar (Launchpad) <https://launchpad.net/bzr>

Note

Bazaar is replaced in favor of a git-based workflow as the main Version Control Sys-
tem within Ubuntu. There are some projects that still use it, but be aware that
documents that reference Bazaar as an actively used Version Control System within
Ubuntu are most likely outdated.

See also: git-ubuntu

150 https://en.wikipedia.org/wiki/ARM_architecture_family
151 https://en.wikipedia.org/wiki/AArch64
152 https://en.wikipedia.org/wiki/AArch64

73 of 102

https://en.wikipedia.org/wiki/ARM_architecture_family
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/AArch64

best-effort
Work in Progress

Big-Endian
Work in Progress

See also: Endianness

Binaries
Work in Progress

Binary Package
A Debian binary package is a standardized format with the file extension .deb that the
Package Manager (dpkg(1)153 or apt(8)154) can understand to install and uninstall soft-
wareona targetmachine to simplify distributing software to a targetmachine andman-
aging software on a target machine.

See: Binary Packages (explanation) (page 33)

Blank space
Blank space characters refer to characters in a text (especially SourceCode) that areused
for formatting and spacingbut donot produce visiblemarks or symbolswhen rendered.
Common blank space characters include spaces, tabs and newline characters.

Branch
Work in Progress

Breezy
A Fork of the Bazaar Version Control System.

See also: Breezy (Launchpad)155, www.breezy-vcs.org156

BTS
Abbreviation for Bug Tracking System

Bug
In software development a “bug” refers to unintended or unexpected behaviour of a
computer program or system that produce incorrect results, or crashes. Bugs can oc-
cur due to programming mistakes, design issues, or unexpected interactions between
different parts of the software.

Identifying and fixing Bugs is a fundamental part of the software development process
to ensure that the software functions as intended and is free of errors.

See also: Software bug (Wikipedia)157

Bug Tracking System
A platform used by software development teams to manage and monitor the progress
of reported issues or Bugs within a software project. It provides a centralized platform
for users to report problems, assign tasks to developers, track the status of issues, pri-
oritize fixes, and maintain a comprehensive record of software defects and their reso-
lutions. This system helps streamline the debugging process and enhances communi-
cation among teammembers, ultimately leading to improved software quality.

153 https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
154 https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
155 https://launchpad.net/brz
156 https://www.breezy-vcs.org/
157 https://en.wikipedia.org/wiki/Software_bug

74 of 102

https://manpages.ubuntu.com/manpages/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/en/man8/apt.8.html
https://launchpad.net/brz
https://www.breezy-vcs.org/
https://en.wikipedia.org/wiki/Software_bug

Launchpad is the Bug Tracking System for Ubuntu Packages.

See also: Bug tracking system (Wikipedia)158

BZR
Abbreviation for Bazaar

Canonical
Canonical Ltd. is a UK-based private company that is devoted to the Free and Open
Source Software philosophy and created several notable software projects, including
Ubuntu. Canonical offers commercial support for Ubuntu and related services and is
responsible for delivering six-monthly milestone releases and regular LTS releases for
enterprise production use, as well as security updates, support and the entire online
infrastructure for community interaction.

Find out more on the Canonical website: canonical.com159

Canonical Discourse
A Discourse instance for internal/company-wide discussions. The discussions here will
only be accessible to the Canonical employes.

See: discourse.canonical.com160

CD
Abbreviation for Continuous Delivery

CD Mirror
AMirror of the Ubuntu Image archive (cdimage.ubuntu.com161).

See the complete list of officially recognized Ubuntu image archive mirrors162.

Central Processing Unit
The main component of a computer, that is responsible for executing the instructions
of a computer program, such as arithmetic, logic, and input/output (I/O) operations.

Certified Ubuntu Engineer
Develop and certify your skills on the world’s most popular Linux OS . https://ubuntu.
com/credentials

Changelog
The debian/changelog file in a Source Package.

See: Basic overview of the debian/ directory (page 53)

See also: Section 4.4 Debian changelog (Debian Policy Manual v4.6.2.0)163

Checkout
Work in Progress

CI
Abbreviation for Continuous Integration

Circle of Friends
TheUbuntu logo is calledCircle of Friends, because it is derived fromapicture that shows

158 https://en.wikipedia.org/wiki/Bug_tracking_system
159 https://canonical.com/
160 https://discourse.canonical.com
161 https://cdimage.ubuntu.com/
162 https://launchpad.net/ubuntu/+cdmirrors
163 https://www.debian.org/doc/debian-policy/ch-source.html#debian-changelog-debian-changelog

75 of 102

https://en.wikipedia.org/wiki/Bug_tracking_system
https://canonical.com/
https://discourse.canonical.com
https://cdimage.ubuntu.com/
https://launchpad.net/ubuntu/+cdmirrors
https://ubuntu.com/credentials
https://ubuntu.com/credentials
https://www.debian.org/doc/debian-policy/ch-source.html#debian-changelog-debian-changelog

three friends extending their arms, overlapping in the shape of a circle. It should rep-
resent the core values of Ubuntu164: Freedom, Reliable, Precise and Collaborative.

CISC
Abbreviation for Complex Instruction Set Computer

CLA
Abbreviation for Contributor Licence Agreement

CLI
Abbreviation for Command Line Interface

Closed Source Software
Work in Progress

CoC
Abbreviation for Code of Conduct

Code name
Work in Progress

Code of Conduct
Work in Progress

See also: Ubuntu Code of Conduct

Code Review
Work in Progress

CoF
Abbreviation for Circle of Friends

164 https://design.ubuntu.com/brand

76 of 102

https://design.ubuntu.com/brand

Command Line Interface
Work in Progress

Commit
Work in Progress

Common Vulnerabilities and Exposures
Work in Progress

Complex Instruction Set
A CPU Architecture featuring a rich and diverse set of instructions, often capable of
performing complex operations in a single instruction. CISC processors aim tominimize
the number of instructions needed to complete a task, potentially sacrificing execution
speed for instruction richness.

See also: Complex instruction set computer (Wikipedia)165

Component
Components are logical subdivisions or namespaces of the Packages in a Suite (page 41).
The APT Package Manager can individually subscribe to the components of a Suite
(page 41).

The Packages of an Ubuntu Series (page 39) are categorized if they are Open Source
Software and part of the Base Packages for a given Series (page 39) and sorted into
the components main (page 42), restricted (page 42), universe (page 42), or multiverse
(page 42), as shown in the following table:

Open Source Software Closed Source Software
Ubuntu Base Packages main (page 42) restricted (page 42)
Community Packages universe (page 42) multiverse (page 42)

See: Components (explanation) (page 41)

Continuous Delivery
Work in Progress

See also: Continuous delivery (Wikipedia)166

Continuous Integration
Work in Progress

See also: Continuous integration (Wikipedia)167

Contributor Licence Agreement
Work in Progress

Control File
The debian/control file in a Source Package.

See: Basic overview of the debian/ directory (page 53)

This can also refer to aDebian source control file (.dscfile) or the control file in a Binary
Package (.deb file).

165 https://en.wikipedia.org/wiki/Complex_instruction_set_computer
166 https://en.wikipedia.org/wiki/Continuous_delivery
167 https://en.wikipedia.org/wiki/Continuous_integration

77 of 102

https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_integration

See: Chapter 5. Control files and their fields (Debian Policy Manual v4.6.2.0)168

Coordinated Release Date
The date at which the details of a CVE are to be publicly disclosed.

Copyleft
Work in Progress

Copyright
Work in Progress

Copyright File
The debian/copyright file in a Source Package.

See: Basic overview of the debian/ directory (page 53)

See also: Section 4.5. Copyright (Debian Policy Manual v4.6.2.0)169

CPU
Abbreviation for Central Processing Unit

CRD
Abbreviation for Coordinated Release Date

Cryptographic Signature
Work in Progress

CUE
Abbreviation for Certified Ubuntu Engineer

Current Release in Development
Ubuntu follows a strict time-based release cycle. Every sixmonths a newUbuntu version
is released.

The “Current Release in Development” is the Ubuntu version that is in development for
the next release at any given time. It is also often referred to as “devel”.

See: Ubuntu Releases (explanation) (page 34)

CVE
Abbreviation for Common Vulnerabilities and Exposures

Debian
Debian is a widely used community-driven Free and Open Source Operating System
known for its stability and extensive software Repository . It follows a strict commit-
ment to Free and Open Source Software principles and serves as the basis for various
Linux Distributions (including Ubuntu). Debian’ Package Manager , APT , simplifies soft-
ware installation and updates, making it a popular choice for servers and desktops.

See also: www.debian.org170

Debian System Administration
Work in Progress

deb
debs

.deb is the file extension of a Debian Binary Package.

168 https://www.debian.org/doc/debian-policy/ch-controlfields.html
169 https://www.debian.org/doc/debian-policy/ch-source.html#copyright-debian-copyright
170 https://www.debian.org/

78 of 102

https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-source.html#copyright-debian-copyright
https://www.debian.org/

Detached Signature
A detached signature is a Digital Signature that is separated from the data it signs. In
contrast to an embedded signature, which is included within the data it signs, a de-
tached signature is kept as a separate file or entity.

Devel
Shorthand term for the Current Release in Development .

Developer Membership Board
Work in Progress

See also: Developer Membership Board (Ubuntu Wiki)171

diff
A text format that shows the difference between files that are compared. A file that
contains text in this format usually has the file extension .diff. This file format does not
work well for comparing files in a non-text encoded fromat (e.g. .bin, .png, .jpg).

See also diff(1)172, git-diff(1)173

Discourse
An open-source forum software that is used by Ubuntu and Canonical.

See also: Ubuntu Discourse, Canonical Discourse, Discourse Project Homepage174

Distribution
In general, a software distribution (also called “distro”) is a set of software components
that is distributed as a whole to users.

Usually people think specifically of Linux distributions. A Linux distribution (or distro),
is a complete Operating System based on the Linux Kernel. It includes essential sys-
tem components, software applications, and Package Management Tools, tailored to a
specific purpose or user preferences. Linux distributions vary in features, desktop en-
vironments, and software Repositories, allowing users to choose the one that best suits
their needs.

See also: Linux distribution (Wikipedia)175

DMB
Abbreviation for Developer Membership Board

DNS
Abbreviation for Domain Name System

Domain Name System
Work in Progress

Downstream
Asoftwareproject(s) (and associatedentities) that dependonanother softwareproject
directly or indirectly.

See Downstream (explanation) (page 27)

171 https://wiki.ubuntu.com/DeveloperMembershipBoard
172 https://manpages.ubuntu.com/manpages/en/man1/diff.1.html
173 https://manpages.ubuntu.com/manpages/en/man1/git-diff.1.html
174 https://www.discourse.org/
175 https://en.wikipedia.org/wiki/Linux_distribution

79 of 102

https://wiki.ubuntu.com/DeveloperMembershipBoard
https://manpages.ubuntu.com/manpages/en/man1/diff.1.html
https://manpages.ubuntu.com/manpages/en/man1/git-diff.1.html
https://www.discourse.org/
https://en.wikipedia.org/wiki/Linux_distribution

DSA
Abbreviation for Debian System Administration

dsc
.dsc is the file extension of a Debian source control file.

See: Chapter 5. Control files and their fields (Debian Policy Manual v4.6.2.0)176

End of Life
Refers to the End of Support (Life) for a product/software.

End of Line
The end of a line of encoded text is indicated by a control character or sequence of
control characters.

This is relevant for text parser which often parse text line by line.

The most common examples for control character(s) that indicate a end of line are:

Operating System Abbrevia-
tion*

hex
value(s)*

dec
value(s)*

Escape se-
quence*

Unix and Unix-like sys-
tems

LF 0A 10 \n

Windows systems CR LF 0D 0A 13 10 \r \n

* for the character encoding ASCII

End of Support
Work in Progress

End-user license agreement
Work in Progress

Embedded Systems
Work in Progress

Endianness
Work in Progress

See also: Little-Endian, Big-Endian, Endianness (Wikipedia)177

EoL
Abbreviation for either End of Life or End of Line

EoS
Abbreviation for End of Support

ESM
Abbreviation for Expanded Security Maintenance

EULA
Abbreviation for End-user license agreement

Expanded Security Maintenance
Work in Progress

176 https://www.debian.org/doc/debian-policy/ch-controlfields.html
177 https://en.wikipedia.org/wiki/Endianness

80 of 102

https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://en.wikipedia.org/wiki/Endianness

See also: Expanded Security Maintenance (homepage)178

Failed to build from Source
Work in Progress

Failed to install
Work in Progress

Feature Freeze Exception
Work in Progress (see https://wiki.ubuntu.com/FreezeExceptionProcess)

Feature Request
Work in Progress

Federal Information Processing Standards
A set of standards and guidelines of the United States federal government developed
by National Institute of Standards and Technology (NIST) to ensure the security and in-
teroperability of computer systems and software used by non-military federal agencies
and its contractors.

See also: Federal Information Processing Standards (Wikipedia)179

FFE
Abbreviation for Feature Freeze Exception

FIPS
Abbreviation for Federal Information Processing Standards

Fork
In the context of Open Source Software development, a “fork” refers to the process of
creating a new, independent version of a software project by copying its Source Code
to evolve separately, potentially with different goals, features, or contributors.

FOSS
Abbreviation for Free and Open Source Software

FR
Abbreviation for Feature Request

Free and Open Source Software
Work in Progress

See also: Free and open-source software (Wikipedia)180

Free Software
Work in Progress

FTBFS
Abbreviation for Failed to build from Source

FTI
Abbreviation for Failed to install

GA
Abbreviation for General Availability

178 https://ubuntu.com/esm
179 https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
180 https://en.wikipedia.org/wiki/Free_and_open-source_software

81 of 102

https://ubuntu.com/esm
https://wiki.ubuntu.com/FreezeExceptionProcess
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/Free_and_open-source_software

General Availability
Work in Progress

General Public License
Work in Progress

git
Work in Progress

git-ubuntu
Work in Progress

GNU
GNU is a recursive acronym for “GNU’s Not Unix!”. It is a collection of Free and Open
Source Software that can be used as an Operating System and aims to respect its users’
freedom. The collection of Free and Open Source Software is often used with Unix-like
kernels like Linux (these Distributions are commonly referred to as “GNU/Linux”).

For example, Debian and Ubuntu are GNU/Linux Distributions.

Most of the GNU software is licensed under the GNU General Public License (GPL).

See also: GNU (Wikipedia)181, www.gnu.org182

GPL
Abbreviation for GNU General Public License

GUI
Abbreviation for Graphical User Interface

i386
CPU Architecture identifier (also known as Intel x86, 80x86, and x86), thatwas originally
released as 80386; a 32-Bit Microprocessor by Intel.

See also: i386 (Wikipedia)183

IBM
Work in Progress Abbreviation for International Business Machines

Find more information on the IBM website184.

IBM zSystems
Work in Progress

IC
Abbreviation for Individual Contributor

ICE
Abbreviation for Internal Compiler Error

IEEE
Abbreviation for Institute of Electrical and Electronics Engineers

Intel 64
See arm64

181 https://en.wikipedia.org/wiki/GNU
182 https://www.gnu.org
183 https://en.wikipedia.org/wiki/I386
184 https://www.ibm.com/

82 of 102

https://en.wikipedia.org/wiki/GNU
https://www.gnu.org
https://en.wikipedia.org/wiki/I386
https://www.ibm.com/

Intel x86
See i386

IRC
Abbreviation for Internet Relay Chat

IRCC
Abbreviation for Ubuntu IRC Council

Image
Within the context of Ubuntu development, an “Image” refers to an .iso file that con-
tains a bootable Ubuntu installer that can be burned to a CD to make installation disks.

See also: www.releases.ubuntu.com185, Optical disc image (Wikipedia)186

Individual Contributor
Work in Progress

Institute of Electrical and Electronics Engineers
Work in Progress (see https://www.ieee.org/)

Intent to Package
Work in Progress (see https://wiki.debian.org/ITP)

Internal Compiler Error
Work in Progress

Internet Relay Chat
Internet Relay Chat (IRC)

ISO
Work in Progress

ITP
Abbreviation for Intent to Package

Kernel
Work in Progress

Keyring
Work in Progress

Launchpad
The general development platform where Ubuntu itself and most of Ubuntu related
software projects live.

See: Launchpad (explanation article) (page 45)

Linux
Linux is an Open Source Operating System Kernel originally created by Linus Torvalds in
1991. It forms the core of various Linux Distributions, such as Debian and Ubuntu. Linux
is known for its stability, security, and flexibility, making it a popular choice for servers,
desktops, and embedded systems.

See also: Linux (Wikipedia)187

185 https://www.releases.ubuntu.com/
186 https://en.wikipedia.org/wiki/Optical_disc_image
187 https://en.wikipedia.org/wiki/Linux

83 of 102

https://www.releases.ubuntu.com/
https://en.wikipedia.org/wiki/Optical_disc_image
https://www.ieee.org/
https://wiki.debian.org/ITP
https://en.wikipedia.org/wiki/Linux

LinuxONE
Work in Progress

Linux Containers
See LXC

Little-Endian
Work in Progress

See also: Endianness

Long Term Support
Work in Progress

LP
Abbreviation for Launchpad

LTS
Abbreviation for Long Term Support

LXC
Linux Containers (see https://linuxcontainers.org/lxc/introduction/)

LXD
LXD is system container manager (see https://documentation.ubuntu.com/lxd/en/
latest/)

Main
A Component of everyUbuntu Series (page 39) in theUbuntu Archive that containsOpen
Source Packages which are supported and maintained by Canonical.

See: Components (page 41)

Main Inclusion Review
The review process when a Package in Universe orMultiverse gets requested to be pro-
moted toMain or Restricted .

See: Main Inclusion Review (explanation article) (page 51)

Mailing List
Work in Progress

Maintainer
Work in Progress

Masters of the Universe
Work in Progress

Merge
Work in Progress

Merge Conflict
Work in Progress

Merge Proposal
Work in Progress

Micro Release Exception
See https://wiki.ubuntu.com/StableReleaseUpdates/MicroReleaseExceptions

84 of 102

https://linuxcontainers.org/lxc/introduction/
https://documentation.ubuntu.com/lxd/en/latest/
https://documentation.ubuntu.com/lxd/en/latest/
https://wiki.ubuntu.com/StableReleaseUpdates/MicroReleaseExceptions

MIR
Abbreviation forMain Inclusion Review

MIR Team
The Ubuntu team that reviews requests to promote Packages in Universe orMultiverse
toMain or Restricted .

See: Main Inclusion Review (explanation article) (page 51)

Mirror
A server that “mirrors” (replicates and keeps in sync) the content of another server to
distribute network traffic, reduce latency, and provide redundancy, ensuring high avail-
ability and fault tolerance.

See also: Archive Mirror , CD Mirror

MOTU
Abbreviation forMasters of the Universe

MP
Abbreviation forMerge Proposal

MRE
Abbreviation forMicro Release Exception

Multiverse
A Component of everyUbuntu Series (page 39) in theUbuntu Archive that contains Pack-
ages of Closed Source Software orOpen Source Software restricted by copyright or legal
issues. These Packages are maintained and supported by the Ubuntu community.

See: Components (page 41)

Namespace
A concept in computer science and software development that defines a scope or con-
text in which identifiers (such as variable names, functions, or classes) are unique and
distinct. It helps prevent naming conflicts and organizes code elements into separate
compartments. Namespaces are commonly used in programming languages to group
and categorize code, making it more manageable and maintainable. They play a cru-
cial role in encapsulation and modularity, allowing developers to create reusable and
organized code structures. Namespaces are particularly important in larger software
projects where numerous components and libraries need to coexist without clashing
with each other’s names.

National Institute of Standards and Technology
Work in Progress

Native Package
Native source packages are Source Packages that are their ownUpstream, therefore they
do not have an orig tarball.

See: Native Source Packages (explanation) (page 30)

Not built from Source
Work in Progress

NBS
Abbreviation for Not built from Source

85 of 102

Never Part Of A Stable Release
Work in Progress

NIST
Abbreviation for National Institute of Standards and Technology

NPOASR
Abbreviation for Never Part Of A Stable Release

NVIU
Abbreviation for Newer Version in Unstable

Newer Version in Unstable
Work in Progress

Open Source Software
Work in Progress

Operating System
An operating system (OS) is essential system software that manages computer hard-
ware and software resources. It provides crucial services for computer programs, in-
cluding hardware control, task scheduling, memory management, file operations, and
user interfaces, simplifying program development and execution.

See also: Operating system (Wikipedia)188

orig tarball
original tarball

The .orig.tar.ext and .orig-component.tar.ext (where ext can be gz, bz2, lzma and
xz and component can contain alphanumeric characters (a-zA-Z0-9) and hyphens -)
tar(5)189 archive files of a Debian Source Package that contains the original Source of
the Upstream project.

See also: dpkg-source(1)190, tarball

OS
Abbreviation for Operating System

OSS
Abbreviation for Open Source Software

Package
Work in Progress

Package Manager
Work in Progress

Patch
A patch is a (often small) piece of code or a software update designed to fix or improve
a computer program or system. It is typically applied to address Security Vulnerabilities,
Bugs, or enhance functionality, ensuring the software remains up-to-date and reliable.
Patches are essential for maintaining software integrity and security.

See also: Patch (Wikipedia)191

188 https://en.wikipedia.org/wiki/Operating_system
189 https://manpages.ubuntu.com/manpages/en/man5/tar.5.html
190 https://manpages.ubuntu.com/manpages/en/man1/dpkg-source.1.html
191 https://en.wikipedia.org/wiki/Patch_(computing)

86 of 102

https://en.wikipedia.org/wiki/Operating_system
https://manpages.ubuntu.com/manpages/en/man5/tar.5.html
https://manpages.ubuntu.com/manpages/en/man1/dpkg-source.1.html
https://en.wikipedia.org/wiki/Patch_(computing)

PCRE
Abbreviation for Perl Compatible Regular Expressions

Perl Compatible Regular Expressions
Work in Progress

See also: PCRE (Reference Implementation)192

Personal Package Archive
Work in Progress

PKCS
Abbreviation for Public Key Cryptography Standards

Pocket
A pocket is a Package sub-repository within theUbuntu Archive. EveryUbuntu Series has
the pockets release (page 40), security (page 40), updates (page 40), proposed (page 40),
and backports (page 40).

See: Pockets (explanation) (page 40)

POSIX
Abbreviation forPortableOperating System Interface: A family of standards specifiedby
the IEEE Computer Society for maintaining compatibility between Operating Systems.
POSIX defines the API , along with command line shells and utility interfaces, for soft-
ware compatibility with variants of Unix and other Operating Systems.

PowerPC
Work in Progress

PPA
Abbreviation for Personal Package Archive

ppc64el
Work in Progress (PowerPC64 Little-Endian)

PR
Abbreviation for Pull Request

Public Key Cryptography Standards
Work in Progress

See also: PKCS (Wikipedia)193

Pull
Work in Progress

Pull Request
Work in Progress

Push
Work in Progress

Real Time Operating System
Work in Progress

Rebase
Work in Progress

192 https://www.pcre.org/
193 https://en.wikipedia.org/wiki/PKCS

87 of 102

https://www.pcre.org/
https://en.wikipedia.org/wiki/PKCS

Reduced Instruction Set
a CPU characterized by a simplified and streamlined set of instructions, optimized for
efficient and fast execution of basic operations. RISC processors typically prioritize
speed over complexity.

Examples of RISC Architectures are arm64, armhf , RISC-V , ppc64el, and PowerPC .

See also: Reduced instruction set computer (Wikipedia)194

RegEx
Abbreviation for Regular Expression

Regular Expression
A sequence of characters that specifies a text-matching pattern. String-search algo-
rithms usually use these patterns for input validation or find (and replace) operations
on strings.

While this general term stems from theoretical computer science and formal language
theory, people usually think of Perl Compatible Regular Expressions (PCRE).

Repository
Work in Progress

Note

ambiguity between git or apt repository

Request for Comments
Work in Progress

See also: Request for Comments (Wikipedia)195

Request of Maintainer
Work in Progress

Request of Porter
Work in Progress

Requested by the QA team
Work in Progress

Request of Security Team
Work in Progress

Request of Stable Release Manager
Work in Progress

Restricted
A Component of every Ubuntu Series (page 39) in the Ubuntu Archive that contains
Closed Source Packages which are supported and maintained by Canonical.

See: Components (page 41)

RFC
Abbreviation for Request for Comments

194 https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
195 https://en.wikipedia.org/wiki/Request_for_Comments

88 of 102

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Request_for_Comments

RISC
Abbreviation for Reduced Instruction Set Computer

RISC-V
Work in Progress

riscv64
Work in Progress

RoM
Abbreviation for Request of Maintainer

Root
Work in Progress

RoP
Abbreviation for Request of Porter

RoQA
Abbreviation for Requested by the QA team

RoSRM
Abbreviation for Request of Stable Release Manager

RoST
Abbreviation for Request of Security Team

RTOS
Abbreviation for Real Time Operating System

Rules File
The debian/rules file in a Source Package.

See: Basic overview of the debian/ directory (page 53)

See also: Section 4.9. Main building script (Debian Policy Manual v4.6.2.0)196

s390x
Work in Progress

Series
A series refers to the Packages in the Ubuntu Archive that target a specific Ubuntu ver-
sion. A series is usually referred to by its Code name.

See: Series (explanation) (page 39)

Service-level Agreement
Work in Progress

Shell
Work in Progress

Signature
A digital signature is a cryptographic record that verifies the authenticity and integrity
of data.

Every Package in the Ubuntu Archive is digitally signed, enabling users to detect data
corruption during the download or unwanted/malicious modifications. Furthermore,
someUpstream projects sign their releases, which lets UbuntuMaintainers and users of

196 https://www.debian.org/doc/debian-policy/ch-source.html#main-building-script-debian-rules

89 of 102

https://www.debian.org/doc/debian-policy/ch-source.html#main-building-script-debian-rules

the corresponding packages verify that the Source Code is from the developers of the
upstream project.

The tool gpg(1)197 is commonly used to create and modify digital signatures. Further
information can be found in the GNU Privacy Handbook198.

Signing Key
Work in Progress

SLA
Abbreviation for Service-level Agreement

Source
Work in Progress

Source Code
Work in Progress

Source Package
A Debian source package contains the Source material used to build one or more Binary
Packages.

See: Source Packages (explanation) (page 29)

Source Tree
Work in Progress

Sponsor
Work in Progress

SRU
Abbreviation for Stable Release Update

Stable Release Update
Work in Progress

Stack
In computer science, a Stack is a data-structure that can store a collection of elements
linearly with two primary operations:

• “Push”: adds an element to the collection

• “Pop”: removes the most recently added element in the collection

Stack implementatuons also often have a “Peak” operation to see the most recently
added element in the collection without removing it.

The name Stack stems from the analogy of items “stacked” ontop of eachother like a
stack of plates where you have to remove the plates above to access the plates below.

See also: Stack (abstract data type)199

Staging Environment
Work in Progress

Standard Output
Work in Progress

197 https://manpages.ubuntu.com/manpages/en/man1/gpg.1.html
198 https://www.gnupg.org/gph/en/manual.html#AEN136
199 https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

90 of 102

https://manpages.ubuntu.com/manpages/en/man1/gpg.1.html
https://www.gnupg.org/gph/en/manual.html#AEN136
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

tarball
A file in the tar(5)200 archive format, which collects any number of files, directories,
and other file system objects (symbolic links, device nodes, etc.) into a single stream of
bytes. The format was originally designed to be used with tape drives, but nowadays it
is widely used as a general packaging mechanism.

See also: orig tarball

Text Encoding
Text encoding refers to the method or schema used to represent and store text char-
acters in a digital format. It involves assigning numerical codes (typically binary) to each
character in a character set, which allows computers to process and display text.

For example, ASCII and UTF-8 are commonly used text encoding formats.

The choice of a text encoding format is essential for ensuring proper character repre-
sentation, especially when dealing with different languages and special characters.

TLS
Abbreviation for Transport Layer Security

TPM
Abbreviation for Trusted Platform Module

Transport Layer Security
Work in Progress

Trusted Platform Module
Work in Progress

TUI
Abbreviation for text-based User Interface

Ubuntu
The word “ubuntu” is derived from the pronunciation of an an ancient African word
“oǒ’boǒntoō” meaning ‘humanity to others’. It is often described as reminding us that ‘I
am what I am because of who we all are’.

The Ubuntu Operating System tries to bring that spirit to the world of computers and
software. The Ubuntu Distribution is a Debian-based Linux Distribution and aims to rep-
resents the best of what the world’s software community has shared with the world.

See: The story of Ubuntu201, Ubuntu ethos202, Ubuntu Project Governance203

Ubuntu Archive
The Ubuntu Package Archive is and APT Repository that is preconfigured by default on
Ubuntu installations. It hosts Debian Binary Packages (.deb files) and Source Packages
(.dsc files).

See: Ubuntu Package Archive (explanation) (page 39)

Ubuntu autopkgtest Cloud
Work in Progress

200 https://manpages.ubuntu.com/manpages/en/man5/tar.5.html
201 https://ubuntu.com/about
202 https://ubuntu.com/community/ethos
203 https://ubuntu.com/community/governance

91 of 102

https://manpages.ubuntu.com/manpages/en/man5/tar.5.html
https://ubuntu.com/about
https://ubuntu.com/community/ethos
https://ubuntu.com/community/governance

See: autopkgtest.ubuntu.com204

Ubuntu Base Packages
Packages that are in the Main or Restricted Component . These are packages that are
maintained by Canonical, because they are fundamental for Ubuntu.

See also: Main Inclusion Review

Ubuntu Cloud Archive
Work in Progress

See: Cloud Archive (Ubuntu Wiki)205

Ubuntu Code of Conduct
Work in Progress

See: https://ubuntu.com/community/ethos/code-of-conduct

Ubuntu CVE Tracker
Work in Progress (see https://launchpad.net/ubuntu-cve-tracker and https://ubuntu.
com/security/cves)

Ubuntu Delta
A modification to an Ubuntu Package that is derived from a Debian Package.

See also: Upstream & Downstream (explanation) (page 26)

Ubuntu Desktop
Work in Progress

Ubuntu Developer Summit
Between 2004 and 2012, Ubuntu releases were planned during regularly scheduled
summits, where the greater Ubuntu community would come together for planning and
hacking sessions. This event occurred two times a year, each one running for a week.
The discussions were highly technical and heavily influenced the direction of the sub-
sequent Ubuntu release.

These events were called “Ubuntu Developer Summit” (UDS).

These events are continued since November 2022 as “Ubuntu Summit” (US) to include
the broader Ubuntu community and not only developers.

See also: Ubuntu Developer Summit is now Ubuntu Summit (Ubuntu Blog)206, Devel-
oper Summit (Ubuntu Wiki)207

Ubuntu Discourse
A Discourse instance about general Ubuntu development that is accessible to the gen-
eral public, where you can find discussions, announcements, team updates, documen-
tation and much more.

Feel free to introduce yourself208.

See: discourse.ubuntu.com209

204 https://autopkgtest.ubuntu.com/
205 https://wiki.ubuntu.com/OpenStack/CloudArchive
206 https://ubuntu.com/blog/uds-is-now-ubuntu-summit
207 https://wiki.ubuntu.com/DeveloperSummit
208 https://discourse.ubuntu.com/c/intro/101
209 https://discourse.ubuntu.com

92 of 102

https://autopkgtest.ubuntu.com/
https://wiki.ubuntu.com/OpenStack/CloudArchive
https://ubuntu.com/community/ethos/code-of-conduct
https://launchpad.net/ubuntu-cve-tracker
https://ubuntu.com/security/cves
https://ubuntu.com/security/cves
https://ubuntu.com/blog/uds-is-now-ubuntu-summit
https://wiki.ubuntu.com/DeveloperSummit
https://wiki.ubuntu.com/DeveloperSummit
https://discourse.ubuntu.com/c/intro/101
https://discourse.ubuntu.com

Ubuntu flavours
Ubuntu flavours are Distributions of the default Ubuntu releases, which choose their
own default applications and settings. Ubuntu flavours are owned and developed by
members of the Ubuntu community and backed by the full Ubuntu Archive for Packages
and updates.

Officially recognised flavours are:

• Edubuntu210

• Kubuntu211

• Lubuntu212

• Ubuntu Budgie213

• Ubuntu Cinnamon214

• Ubuntu Kylin215

• Ubuntu MATE216

• Ubuntu Studio217

• Ubuntu Unity218

• Xubuntu219

Ubuntu IRC Council
Work in Progress

See also: IRC Council (Ubuntu Wiki)220

Ubuntu Keyserver
Work in Progress

Ubuntu Pro
Work in Progress

See: Ubuntu Pro (homepage)221

Ubuntu Server
Work in Progress

Ubuntu Summit
The Ubuntu Summit (US) is a continuation of Ubuntu Developer Summit since November
2022. The change in name aims to broadening the scope, which opens the event up to
additional audiences.

210 https://edubuntu.org/
211 https://kubuntu.org/
212 https://lubuntu.me/
213 https://ubuntubudgie.org/
214 https://ubuntucinnamon.org/
215 https://www.ubuntukylin.com/index-en.html
216 https://ubuntu-mate.org/
217 https://ubuntustudio.org/
218 https://ubuntuunity.org/
219 https://xubuntu.org/
220 https://wiki.ubuntu.com/IRC/IrcCouncil
221 https://ubuntu.com/pro

93 of 102

https://edubuntu.org/
https://kubuntu.org/
https://lubuntu.me/
https://ubuntubudgie.org/
https://ubuntucinnamon.org/
https://www.ubuntukylin.com/index-en.html
https://ubuntu-mate.org/
https://ubuntustudio.org/
https://ubuntuunity.org/
https://xubuntu.org/
https://wiki.ubuntu.com/IRC/IrcCouncil
https://ubuntu.com/pro

While the Ubuntu Developer Summit was focused on technical development, the talks
andworkshops of theUbuntu Summit will cover development aswell as design, writing,
and community leadership with a wide range of technical skill levels.

The name also results in a nifty new acronym, “US”, or more appropriately, simply “Us”.
This fits very nicely with the meaning of Ubuntu, “I am what I am because of who we all
are”.

If you have any question feel free to send an email at summit@ubuntu.com.

Also, check out the Ubuntu Summit mailing list222.

You can find more information at summit.ubuntu.com223.

UCA
Abbreviation for Ubuntu Cloud Archive

UCT
Abbreviation for Ubuntu CVE Tracker

UDS
Abbreviation for Ubuntu Developer Summit

UI
Abbreviation for User Interface

UIFe
Abbreviation for User Interface Freeze Exception

Uniform Resource Identifier
Work in Progress

See also: Uniform Resource Identifier (Wikipedia)224

Uniform Resource Locator
Work in Progress

See also: URL (Wikipedia)225

Universe
A Component of everyUbuntu Series (page 39) in theUbuntu Archive that containsOpen
Source Packages which are supported and maintained by the Ubuntu community.

See: Components (page 41)

Unix
Unix is an Operating System whose development started in the late 1960s at AT&T Bell
Labs. It is characterized by its multi-user and multi-tasking capabilities, hierarchical file
system, and a suite of Command Line utilities. Unix has been influential in shapingmod-
ern Operating Systems and remains the basis for various Unix-like systems, including
Linux andmacOS.

See also: Unix (Wikipedia)226

222 https://lists.ubuntu.com/mailman/listinfo/summit-news
223 https://summit.ubuntu.com/
224 https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
225 https://en.wikipedia.org/wiki/URL
226 https://en.wikipedia.org/wiki/Unix

94 of 102

mailto:summit@ubuntu.com
https://lists.ubuntu.com/mailman/listinfo/summit-news
https://summit.ubuntu.com/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Unix

Upstream
A software project (and associated entities), another software project depends on di-
rectly or indirectly.

See Upstream (explanation) (page 27)

URI
Abbreviation for Uniform Resource Identifier

URL
Abbreviation for Uniform Resource Locator

US
Abbreviation for Ubuntu Summit

User Experience
The overall experience and satisfaction a user has while interacting with a product or
system. It considers usability, accessibility, user flow, and the emotional response of
users to ensure a positive and efficient interactionwith theUser Interface and the prod-
uct as a whole.

User Interface
Refers to the visual elements and design of a digital product or application that users
interact with. It includes components like buttons, menus, icons, and layout, focusing
on how information is presented and how users navigate through the interface.

User Interface Freeze Exception
Work in Progress

See: Ubuntu development process (page 34)

UX
Abbreviation for User Experience

VCS
Abbreviation for Version Control System

Version Control System
Asoftware tool or systemthat enables developers to track andmanage changes to their
Source Code and collaborate with others effectively. It maintains a history of Source
Code revisions, allowing users to revert to previous versions, track modifications, and
work on different Branches of Source Code simultaneously. Version Control Systems are
crucial for Source Code management and collaboration in Open Source Software devel-
opment projects.

Waiting on Upstream
Work in Progress

See also: Upstream

Watch File
The debian/watch file in a Source Package.

See: Basic overview of the debian/ directory (page 53)

See also: uscan(1)227, Section 4.11. Upstream source location (Debian Policy Manual
v4.6.2.0)228

227 https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
228 https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

95 of 102

https://manpages.ubuntu.com/manpages/en/man1/uscan.1.html
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

WoU
Abbreviation forWaiting on Upstream

x64
See amd64

x86
See i386

x86-64
See amd64

x86_64
See amd64

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 97) for details of how to join in.

96 of 102

5. Contribute to the Ubuntu
Packaging Guide
The Ubuntu Packaging Guide229 is an open source project that warmly welcomes community
contributions and suggestions.

This document describes how to contribute changes to the Ubuntu Packaging Guide. If you
don’t already have a GitHub account, you can sign up on their website230.

5.1. How to contribute
5.1.1. I want to raise an issue

We use GitHub issues to track things that need to be fixed. If you find a problem and want
to report it to us, you can click on the “Give feedback” button at the top of any page in the
Guide, and it will open an issue for you.

Alternatively, you can open an issue directly231 and describe the problem you’re having, or
the suggestion you want to add.

5.1.2. I have a question about packaging

If you’re stuck and have a question, you can use our GitHub discussion board to ask, or start
a discussion232.

Note that we may not be able to respond immediately, so please be patient!

5.1.3. I want to submit a fix

If you found an issue and want to submit a fix for it, or have written a guide you would like
to add to the documentation, feel free to open a pull request to submit your fix233 against
our main branch. If you need help, please use the discussion board or contact one of the
repository administrators.

5.2. Contribution format for the project
5.2.1. Sphinx & reStructuredText

The Guide is built using Sphinx234. Articles should be written in reStructuredText. The fol-
lowing links might be helpful:

• A ReStructuredText Primer235

• Quick reStructuredText236

229 https://github.com/canonical/ubuntu-packaging-guide
230 https://github.com
231 https://github.com/canonical/ubuntu-packaging-guide/issues
232 https://github.com/canonical/ubuntu-packaging-guide/discussions
233 https://github.com/canonical/ubuntu-packaging-guide/pulls
234 https://www.sphinx-doc.org/
235 https://docutils.sourceforge.io/docs/user/rst/quickstart.html
236 https://docutils.sourceforge.io/docs/user/rst/quickref.html

97 of 102

https://github.com/canonical/ubuntu-packaging-guide
https://github.com
https://github.com/canonical/ubuntu-packaging-guide/issues
https://github.com/canonical/ubuntu-packaging-guide/discussions
https://github.com/canonical/ubuntu-packaging-guide/discussions
https://github.com/canonical/ubuntu-packaging-guide/pulls
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html

5.2.2. How to add a new Sphinx extension

In general, there are two places you will need to update to add new extensions.

• docs/conf.py - add the name of the extension to the extensions configuration parame-
ter

• docs/.sphinx/requirements.txt - add the name of the extension to the bottom of the
list

The documentation for most Sphinx extensions will tell you what text to add to the conf.py
file, as in this example:

extensions = [
'sphinx_copybutton',
'sphinx_design',

]

5.2.3. Translations

Weuse the localisation (l10n)module for Sphinx and gettext for translating theUbuntu Pack-
aging Guide.

Some notes about translating the guide:

• Some formatting is part of reStructuredText and should not be changed, including em-
phasis (which uses asterisks or underscores), paragraph ending before a code block (::)
and double backtick quotes (``).

• The Guide uses email-style reStructuredText links. If you see a link in the text like:

`Translatable link text <Link_Reference_>`_

Then replace the “Translatable link text” with your translations, but keep the
Link_Reference unchanged (even if it is in English). The same applies if a URL is used
instead of Link_Reference.

To test your translation, use make BUILDER-LANGUAGE command (for example, make html-it
will build HTML docs in Italian language).

98 of 102

Index
Symbols
80x86, 71

A
AA, 71
AArch32, 71
AArch64, 71
ABI, 71
amd64, 71
ANAIS, 71
API, 71
Application Binary Interface, 71
Application Programming Interface, 72
APT, 72
Architecture, 72
Architecture Not Allowed In Source, 72
Archive, 72
Archive Admin, 72
Archive Mirror, 72
ARM, 73
ARM Hard Float, 73
arm64, 73
armhf, 73
ARMv7, 73
ARMv8, 73
autopkgtest, 73

B
Backports, 73
Bazaar, 73
best-effort, 74
Big-Endian, 74
Binaries, 74
Binary Package, 74
Blank space, 74
Branch, 74
Breezy, 74
BTS, 74
Bug, 74
Bug Tracking System, 74
BZR, 75

C
Canonical, 75
Canonical Discourse, 75
CD, 75
CD Mirror, 75
Central Processing Unit, 75
Certified Ubuntu Engineer, 75

Changelog, 75
Checkout, 75
CI, 75
Circle of Friends, 75
CISC, 76
CLA, 76
CLI, 76
Closed Source Software, 76
CoC, 76
Code name, 76
Code of Conduct, 76
Code Review, 76
CoF, 76
Command Line Interface, 77
Commit, 77
Common Vulnerabilities and Exposures, 77
Complex Instruction Set, 77
Component, 77
Continuous Delivery, 77
Continuous Integration, 77
Contributor Licence Agreement, 77
Control File, 77
Coordinated Release Date, 78
Copyleft, 78
Copyright, 78
Copyright File, 78
CPU, 78
CRD, 78
Cryptographic Signature, 78
CUE, 78
Current Release in Development, 78
CVE, 78

D
deb, 78
Debian, 78
Debian System Administration, 78
debs, 78
Detached Signature, 79
Devel, 79
Developer Membership Board, 79
diff, 79
Discourse, 79
Distribution, 79
DMB, 79
DNS, 79
Domain Name System, 79
Downstream, 79
DSA, 80

99 of 102

dsc, 80

E
Embedded Systems, 80
End of Life, 80
End of Line, 80
End of Support, 80
End-user license agreement, 80
Endianness, 80
EoL, 80
EoS, 80
ESM, 80
EULA, 80
Expanded Security Maintenance, 80

F
Failed to build from Source, 81
Failed to install, 81
Feature Freeze Exception, 81
Feature Request, 81
Federal Information Processing Standards,

81
FFE, 81
FIPS, 81
Fork, 81
FOSS, 81
FR, 81
Free and Open Source Software, 81
Free Software, 81
FTBFS, 81
FTI, 81

G
GA, 81
General Availability, 82
General Public License, 82
git, 82
git-ubuntu, 82
GNU, 82
GPL, 82
GUI, 82

I
i386, 82
IBM, 82
IBM zSystems, 82
IC, 82
ICE, 82
IEEE, 82
Image, 83
Individual Contributor, 83

Institute of Electrical and Electronics
Engineers, 83

Intel 64, 82
Intel x86, 83
Intent to Package, 83
Internal Compiler Error, 83
Internet Relay Chat, 83
IRC, 83
IRCC, 83
ISO, 83
ITP, 83

K
Kernel, 83
Keyring, 83

L
Launchpad, 83
Linux, 83
Linux Containers, 84
LinuxONE, 84
Little-Endian, 84
Long Term Support, 84
LP, 84
LTS, 84
LXC, 84
LXD, 84

M
Mailing List, 84
Main, 84
Main Inclusion Review, 84
Maintainer, 84
Masters of the Universe, 84
Merge, 84
Merge Conflict, 84
Merge Proposal, 84
Micro Release Exception, 84
MIR, 85
MIR Team, 85
Mirror, 85
MOTU, 85
MP, 85
MRE, 85
Multiverse, 85

N
Namespace, 85
National Institute of Standards and Tech-

nology, 85
Native Package, 85
NBS, 85

100 of 102

Never Part Of A Stable Release, 86
Newer Version in Unstable, 86
NIST, 86
Not built from Source, 85
NPOASR, 86
NVIU, 86

O
Open Source Software, 86
Operating System, 86
orig tarball, 86
original tarball, 86
OS, 86
OSS, 86

P
Package, 86
Package Manager, 86
Patch, 86
PCRE, 87
Perl Compatible Regular Expressions, 87
Personal Package Archive, 87
PKCS, 87
Pocket, 87
POSIX, 87
PowerPC, 87
PPA, 87
ppc64el, 87
PR, 87
Public Key Cryptography Standards, 87
Pull, 87
Pull Request, 87
Push, 87

R
Real Time Operating System, 87
Rebase, 87
Reduced Instruction Set, 88
RegEx, 88
Regular Expression, 88
Repository, 88
Request for Comments, 88
Request of Maintainer, 88
Request of Porter, 88
Request of Security Team, 88
Request of Stable Release Manager, 88
Requested by the QA team, 88
Restricted, 88
RFC, 88
RISC, 89
RISC-V, 89
riscv64, 89

RoM, 89
Root, 89
RoP, 89
RoQA, 89
RoSRM, 89
RoST, 89
RTOS, 89
Rules File, 89

S
s390x, 89
Series, 89
Service-level Agreement, 89
Shell, 89
Signature, 89
Signing Key, 90
SLA, 90
Source, 90
Source Code, 90
Source Package, 90
Source Tree, 90
Sponsor, 90
SRU, 90
Stable Release Update, 90
Stack, 90
Staging Environment, 90
Standard Output, 90

T
tarball, 91
Text Encoding, 91
TLS, 91
TPM, 91
Transport Layer Security, 91
Trusted Platform Module, 91
TUI, 91

U
Ubuntu, 91
Ubuntu Archive, 91
Ubuntu autopkgtest Cloud, 91
Ubuntu Base Packages, 92
Ubuntu Cloud Archive, 92
Ubuntu Code of Conduct, 92
Ubuntu CVE Tracker, 92
Ubuntu Delta, 92
Ubuntu Desktop, 92
Ubuntu Developer Summit, 92
Ubuntu Discourse, 92
Ubuntu flavours, 93
Ubuntu IRC Council, 93
Ubuntu Keyserver, 93

101 of 102

Ubuntu Pro, 93
Ubuntu Server, 93
Ubuntu Summit, 93
UCA, 94
UCT, 94
UDS, 94
UI, 94
UIFe, 94
Uniform Resource Identifier, 94
Uniform Resource Locator, 94
Universe, 94
Unix, 94
Upstream, 95
URI, 95
URL, 95
US, 95
User Experience, 95
User Interface, 95
User Interface Freeze Exception, 95
UX, 95

V
VCS, 95
Version Control System, 95

W
Waiting on Upstream, 95
Watch File, 95
WoU, 96

X
x64, 96
x86, 96
x86_64, 96
x86-64, 96

102 of 102

	Tutorial
	Core tutorial
	Getting set up
	Make changes to a package
	Create a new package
	Fix a bug

	How-to guides
	How do I…?
	Get the source of a package
	git-ubuntu
	Install
	Basic usage
	Example

	pull-pkg
	Install
	Basic usage
	Examples
	pull-lp-source
	pull-ppa-source
	pull-debian-source

	apt-get source
	Basic usage
	Example

	dget
	Install
	Basic usage
	Example

	Download a new upstream version
	Best practices
	Download new upstream version (if available)
	Check for new upstream version (no download)
	Force the download
	Download the source of older versions from the upstream project
	Further Information

	Build packages
	Install built packages
	Using your package manager
	Install .deb files
	Uninstall packages
	Keep the configuration files
	Delete the configuration files

	Install packages from a PPA
	Using add-apt-repository
	Add PPA manually
	Download the .deb files
	Using pull-ppa-debs
	Using the Launchpad web interface

	Resources

	Run tests
	Upload packages to a PPA
	Write patch files
	Propose changes
	Use schroots

	Explanation
	Upstream and downstream
	Terminology
	Ubuntu delta
	Upstream
	Downstream

	Why do we upstream changes?

	Package model
	Source packages
	Source package formats
	Native source packages
	Format: 3.0 (quilt)
	Format: 3.0 (native)
	Format: 1.0
	3.0 formats improvements
	Other formats

	.changes file

	Binary packages
	Resources

	Ubuntu development process
	Ubuntu releases
	Release cadence
	LTS releases
	Point releases
	Interim releases
	Why does Ubuntu use time-based releases?

	Ubuntu version format
	Examples

	Release lifespan
	Regular support
	Long Term Support (LTS)

	Editions
	Ubuntu flavours
	Resources

	Ubuntu package archive
	Repositories
	Series
	Pockets
	release
	security
	updates
	proposed
	backports

	Suite
	Components
	main
	restricted
	universe
	multiverse

	Mirrors
	Country mirrors

	Package uploads
	Security update propagation
	Resources
	Landscape repositories

	Launchpad
	Why not use platforms like GitHub?
	Personal Package Archive (PPA)
	git-based workflow for the development of Ubuntu source packages
	Text markup
	Getting help
	IRC chat rooms
	Mailing lists
	Ask a question
	Report a bug

	Staging environment
	API
	Resources

	Sponsoring
	Proposed migrations
	Stable Release Updates (SRU)
	Debian syncs
	Debian merges
	Transitions
	Backports
	Main Inclusion Review (MIR)
	Submit a package for Main Inclusion Review
	MIR team weekly meeting
	Resources

	Reference
	Basic overview of the debian/ directory
	Supported architectures
	Other architectures
	Resources

	Package tests
	Package version format
	git-ubuntu
	APT
	Debian policy
	Filesystem Hierarchy Standard (FHS)
	(To be) Outdated packaging tools
	Launchpad text markup
	Referencing Launchpad bugs
	Pattern
	Examples

	Blank spaces
	URI addresses
	Examples

	Removal of “
	Resources

	Glossary

	Contribute to the Ubuntu Packaging Guide
	How to contribute
	I want to raise an issue
	I have a question about packaging
	I want to submit a fix

	Contribution format for the project
	Sphinx & reStructuredText
	How to add a new Sphinx extension
	Translations

	Index

