
Ubuntu Packaging
Guide

© 2024 Canonical Ltd.
All rights reserved.

Contents
1 Tutorial 3

1.1 Core tutorial . 3

2 How-to guides 12
2.1 How do I…? . 12

3 Explanation 49
3.1 Upstream and downstream . 49
3.2 Package model . 51
3.3 Patches . 56
3.4 Ubuntu development process . 58
3.5 Ubuntu releases . 64
3.6 Ubuntu package archive . 68
3.7 Launchpad . 74
3.8 Sponsorship . 78
3.9 Proposed migrations . 79
3.10 Importing changes from Debian (merges & syncs) 79
3.11 Transitions . 81
3.12 Backports . 81
3.13 Main Inclusion Review (MIR) . 81

4 Reference 84
4.1 Basic overview of the debian/ directory . 84
4.2 Debian policy . 92
4.3 Supported architectures . 95
4.4 Filesystem hierarchy standard . 96
4.5 Package version format . 99
4.6 DEP 3 – Patch file headers . 99
4.7 Launchpad text markup . 102
4.8 Glossary . 116

5 Contribute to the Ubuntu Packaging Guide 145
5.1 How to contribute . 145
5.2 Contribution format for the project . 145

1 of 146

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2 of 146

1. Tutorial
This section contains step-by-step tutorials to help you get started with Ubuntu packaging
and development. We hope the tutorials make as few assumptions as possible and are acces-
sible to anyone with an interest in Ubuntu packaging.

This should be a great place to start learning about packaging and development.

1.1. Core tutorial
This tutorial will introduce you to the basics of Ubuntu packaging, while helping to set up
your computer so that you can start working with packages.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1.1.1. Getting set up

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1.1.2. Making changes to a package
This tutorial goes through the process of adding a patch to a package in Ubuntu. Specifi-
cally, we add a command-line option to the hello command, which greets a user using their
username. This covers topics like git-ubuntu, quilt, and changelogs.

Getting the tools

We are using a git-ubuntuworkflow. Install it with snap:

$ sudo snap install --classic git-ubuntu

Once we have git-ubuntu installed, use it to fetch the source code for the hello package in
Ubuntu:

3 of 146

$ git-ubuntu clone hello
$ cd hello/

We are using some tools from the ubuntu-dev-tools package. Install it with:

$ sudo apt install -y ubuntu-dev-tools

Understanding the package

Initially, we have the ubuntu/devel branch checked out. At the time of writing this tutorial,
the development series is plucky, so the ubuntu/devel branch is in line with the plucky ver-
sion.

Let’s explore the packaging we are dealing with. In the debian directory, there are files like
changelog, rules, control, and more. Everything outside of the debian directory is from the
original upstream source. In debian/source/format, we see:

3.0 (quilt)

This means that, like most packages, this package uses the quilt tool to manage patches to
the upstream source code. So, even thoughwe are using Git to track our changes to the pack-
aging, we need to use a quilt patch tomaintain the changes required for our new command-
line option.

In particular, instead of ending up with a Git commit that modifies the upstream source code
directly, our commit adds a new file, debian/patches/add-username-command-line-option.
patch, which contains the patch to apply to the upstream source code.

Creating a patch with quilt

First, create the new patch file using quilt:

$ QUILT_PATCHES=debian/patches quilt new add-username-command-line-option.patch
Patch add-username-command-line-option.patch is now on top

This should create a new, empty file: debian/patches/add-username-command-line-option.
patch. And it adds a corresponding entry to the debian/patches/series file. Once that is
done, start writing the patch. For each source file that is modified by our patch, we need to
tell quilt about it. In this case:

$ quilt add src/hello.c

After that, edit the source normally using our favorite text editor. To see our progress, use
the usual Git tools to see the diff. So, after adding the new command line flag, the diffmight
look like:

$ git diff -- src/hello.c
diff --git a/src/hello.c b/src/hello.c
index 453962f..f1ccf0a 100644
--- a/src/hello.c
+++ b/src/hello.c
@@ -23,6 +23,10 @@
#include "error.h"
#include "progname.h"
#include "xalloc.h"

+#include "unistd.h"
(continues on next page)

4 of 146

(continued from previous page)

+#include "sys/types.h"
+#include "pwd.h"
+#include "limits.h"

static const struct option longopts[] = {
{"greeting", required_argument, NULL, 'g'},

@@ -44,6 +48,8 @@ main (int argc, char *argv[])
const char *greeting_msg;
wchar_t *mb_greeting;
size_t len;

+ struct passwd *pwd = NULL;
+ char user_greeting[sizeof("hello, !") + LOGIN_NAME_MAX] = {};

set_program_name (argv[0]);

@@ -65,7 +71,7 @@ main (int argc, char *argv[])
This is implemented in the Gnulib module "closeout". */

atexit (close_stdout);

- while ((optc = getopt_long (argc, argv, "g:htv", longopts, NULL)) != -1)
+ while ((optc = getopt_long (argc, argv, "g:htvu", longopts, NULL)) != -1)

switch (optc)
{
/* --help and --version exit immediately, per GNU coding standards. */

@@ -83,6 +89,15 @@ main (int argc, char *argv[])
case 't':
greeting_msg = _("hello, world");
break;

+ case 'u':
+ errno = 0;
+ pwd = getpwuid(geteuid());
+ if (!pwd)
+ error (EXIT_FAILURE, errno, _("failed to get user name"));
+
+ snprintf(user_greeting, sizeof(user_greeting), "hello, %s!", pwd->pw_
name);
+ greeting_msg = _(user_greeting);
+ break;

default:
lose = 1;
break;

To save these changes in our quilt patch, we need to refresh the patch:

$ quilt refresh -p ab --no-timestamps --no-index

It is good practice to add DEP-3 headers2 to patches to add additional context, such as the
origin, author, and related bugs. The quilt tool has a helper for this:

$ quilt header -e --dep3

2 https://dep-team.pages.debian.net/deps/dep3/

5 of 146

https://dep-team.pages.debian.net/deps/dep3/

This opens a text editor with pre-populated text:

Description: <short description, required>
<long description that can span multiple lines, optional>

Author: <name and email of author, optional>
Origin: <upstream|backport|vendor|other>, <URL, required except if Author is
present>
Bug: <URL to the upstream bug report if any, implies patch has been forwarded,
optional>
Bug-<Vendor>: <URL to the vendor bug report if any, optional>
Forwarded: <URL|no|not-needed, useless if you have a Bug field, optional>
Applied-Upstream: <version|URL|commit, identifies patches merged upstream,
optional>
Reviewed-by: <name and email of a reviewer, optional>
Last-Update: 2025-04-23 <YYYY-MM-DD, last update of the meta-information,
optional>

This patch header follows DEP-3: http://dep.debian.net/deps/dep3/

Not everything here needs to be filled in. In this case, our headers might look like:

Description: Add -u command line option to hello
This command line option adds a username-specific greeting. E.g.,
$ hello -u
hello, user123!

Author: Nick Rosbrook <enr0n@ubuntu.com>
Forwarded: no, Ubuntu only
Last-Update: 2025-04-23

This patch header follows DEP-3: http://dep.debian.net/deps/dep3/

Our final patch should look something like:

Description: Add -u command line option to hello
This command line option adds a username-specific greeting. E.g.,
$ hello -u
hello, user123!

Author: Nick Rosbrook <enr0n@ubuntu.com>
Forwarded: no, Ubuntu only
Last-Update: 2025-04-23

This patch header follows DEP-3: http://dep.debian.net/deps/dep3/
--- a/src/hello.c
+++ b/src/hello.c
@@ -23,6 +23,10 @@
#include "error.h"
#include "progname.h"
#include "xalloc.h"

+#include "unistd.h"
+#include "sys/types.h"
+#include "pwd.h"

(continues on next page)

6 of 146

(continued from previous page)

+#include "limits.h"

static const struct option longopts[] = {
{"greeting", required_argument, NULL, 'g'},

@@ -44,6 +48,8 @@
const char *greeting_msg;
wchar_t *mb_greeting;
size_t len;

+ struct passwd *pwd = NULL;
+ char user_greeting[sizeof("hello, !") + LOGIN_NAME_MAX] = {};

set_program_name (argv[0]);

@@ -65,7 +71,7 @@
This is implemented in the Gnulib module "closeout". */

atexit (close_stdout);

- while ((optc = getopt_long (argc, argv, "g:htv", longopts, NULL)) != -1)
+ while ((optc = getopt_long (argc, argv, "g:htvu", longopts, NULL)) != -1)

switch (optc)
{

/* --help and --version exit immediately, per GNU coding standards. */
@@ -83,6 +89,15 @@

case 't':
greeting_msg = _("hello, world");
break;

+ case 'u':
+ errno = 0;
+ pwd = getpwuid(geteuid());
+ if (!pwd)
+ error (EXIT_FAILURE, errno, _("failed to get user name"));
+
+ snprintf(user_greeting, sizeof(user_greeting), "hello, %s!", pwd->pw_
name);
+ greeting_msg = _(user_greeting);
+ break;

default:
lose = 1;
break;

The patch is currently applied in the working directory.

• To un-apply: quilt pop -a

• To apply again: quilt push -a

7 of 146

Committing the changes

Now that we have created our patch file, track the changes in Git. Add the new patch file
(and in this case, the newly created debian/patches/series file) to the Git index and commit
the change:

$ git add debian/patches/
$ git commit -m "debian/patches: add a new -u command line option to hello"

Next, some housekeeping changes:

1. Make sure that the Maintainer: field in debian/control is set correctly.

2. Add a new entry to debian/changelog explaining our changes and incrementing the
package version number.

To update the maintainer field, use the update-maintainer tool from the ubuntu-dev-tools
package. In this case, the field is already set correctly, so we should see:

$ update-maintainer
The Maintainer email is set to an ubuntu.com address. Doing nothing.

If a change was made, commit that change with:

$ git commit -m "update maintainer" -- debian/control

Once you have either updated the maintainer, or confirmed that it is already correct, update
the changelog. The dch tool helps with this. If you run dch -i, you see something like this in
your text editor:

hello (2.10-3ubuntu1) UNRELEASED; urgency=medium

*

-- Nick Rosbrook <enr0n@ubuntu.com> Tue, 22 Apr 2025 17:03:03 -0400

hello (2.10-3build2) oracular; urgency=medium

* No-change rebuild to bump version in oracular.

-- Marc Deslauriers <marc.deslauriers@ubuntu.com> Mon, 27 May 2024 07:18:24 -
0400

hello (2.10-3build1) noble; urgency=high

* No change rebuild for 64-bit time_t and frame pointers.

-- Julian Andres Klode <juliank@ubuntu.com> Mon, 08 Apr 2024 17:58:52 +0200

[...SNIP...]

The dch tool has done a few things:

1. Created a new empty changelog entry.

2. Set the author line using your name, email, and the current date and time.

3. Updated the package version number to 2.10-3ubuntu1.

8 of 146

4. Set the release name to UNRELEASED.

Our job now is to fill in the entry and explain our changes. In this case, write something like:

hello (2.10-3ubuntu1) plucky; urgency=medium

* debian/patches: add a new -u command line option to hello

-- Nick Rosbrook <enr0n@ubuntu.com> Tue, 22 Apr 2025 17:03:03 -0400

Once you are happy with the changelog entry, commit the change:

$ git commit -m "update changelog" -- debian/changelog

At this point, we should have two (or three if update-maintainer was needed) commits: one
adding our new patch, and another updating the changelog:

$ git log
commit a62e1590cc6a12925c8fe9bce49d9b7f5834468e (HEAD -> ubuntu/devel)
Author: Nick Rosbrook <enr0n@ubuntu.com>
Date: Wed Apr 23 10:04:32 2025 -0400

update changelog

commit d6ef1607ce6163e6a611c591e94f478c2c06a35a
Author: Nick Rosbrook <enr0n@ubuntu.com>
Date: Tue Apr 22 16:24:39 2025 -0400

debian/patches: add a new -u command line option to hello

commit fd73db6d7406ee1fb8512a5b54c259f3b3368eab (tag: pkg/import/2.10-3build2, pkg/ubuntu/plucky-devel, pkg/ubuntu/plucky, pkg/ubuntu/oracular-proposed, pkg/ubuntu/oracular-devel, pkg/ubuntu/oracular, pkg/ubuntu/devel, pkg/HEAD)
Author: Marc Deslauriers <marc.deslauriers@ubuntu.com>
Date: Mon May 27 07:18:24 2024 -0400

2.10-3build2 (patches unapplied)

Imported using git-ubuntu import.

Notes (changelog):
* No-change rebuild to bump version in oracular.

And that’s it! We have successfully:

• Added a new patch to this package.

• Documented our change.

• Prepared the package for its next upload to the Ubuntu archive.

Next steps

From here, there are many options for testing our patch before proposing the change in a
merge proposal:

• Build and test the package locally using sbuild and autopkgtest.

• Upload to a PPA and test from there.

9 of 146

Once you feel confident that the patch is working correctly, open a merge proposal and re-
quest Sponsorship (page 78) for your change.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1.1.3. Create a new package

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1.1.4. Fix a bug

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1.1.5. Merge a package from Debian
This article is still work in progress. You can use the Ubuntu Maintainer Handbook3 in the
meantime.

Note

Be aware that the Ubuntu Maintainer Handbook was written for server team and not a
general audience.

3 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageMerging.md

10 of 146

https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageMerging.md

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

11 of 146

2. How-to guides
If you have a specific goal in mind and are already familiar with the basics of Ubuntu packag-
ing, our how-to guides cover some of the more common operations and tasks that you may
need to complete.

They will help you to achieve a particular end result, but may require you to understand and
adapt the steps to fit your specific requirements.

2.1. How do I…?
Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.1. Get the source of a package
Before you can work on a source package you need to get the source code of that package.
This article presents four ways to achieve this: git-ubuntu, pull-pkg, and apt-get source,
and dget.

git-ubuntu

Note

git-ubuntu is the modern way of working with Ubuntu source packages.

Warning

git-ubuntu is still in active development and these instructions will likely change over
time. While git-ubuntu will become the default packaging method, for now you may
encounter rough edges or unsupported edge cases. You can ask for help in the
#ubuntu-devel channel or open a bug report4 on Launchpad . Bug reports are very wel-
come!

Install

The following command will install git-ubuntu:
4 https://bugs.launchpad.net/git-ubuntu

12 of 146

https://bugs.launchpad.net/git-ubuntu

sudo snap install --classic --edge git-ubuntu

Basic usage

To clone a source package git repository to a directory:

git-ubuntu clone PACKAGE [DIRECTORY]

To generate the orig tarballs for a given source package:

git-ubuntu export-orig

Example

git-ubuntu clone hello
cd hello
git-ubuntu export-orig

You can find further information in these two blog articles (note that they are from 2017):

• git-ubuntu clone5

• Git Ubuntu: More on the imported repositories6

pull-pkg

The pull-pkg command is part of the ubuntu-dev-tools package and downloads a specific
version of a source package, or the latest version from a specified release.

Install

The following command will install ubtuntu-dev-tools, which includes pull-pkg:

sudo apt update && sudo apt install ubuntu-dev-tools

Basic usage

pull-pkg [OPTIONS] PACKAGE-NAME [SERIES|VERSION]

You can find further information on the manual page pull-pkg(1)7.

Examples

There are convenience scripts that follow a similar syntax and set the OPTIONS for pull type
and Distribution appropriately. Here are three examples (although there are others):

5 https://ubuntu.com/blog/git-ubuntu-clone
6 https://ubuntu.com/blog/git-ubuntu-more-on-the-imported-repositories
7 https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

13 of 146

https://ubuntu.com/blog/git-ubuntu-clone
https://ubuntu.com/blog/git-ubuntu-more-on-the-imported-repositories
https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

pull-lp-source

• To download the latest version of the hello source package for the Current Release in
Development from Launchpad:

pull-lp-source hello

• To download the latest version of the hello source package for the Ubuntu mantic re-
lease from Launchpad:

pull-lp-source hello mantic

• To download version 2.10-3 of the hello source package from Launchpad:

pull-lp-source hello 2.10-3

pull-ppa-source

• To download the latest version of the hello source package from the Launchpad Per-
sonal Package Archive (PPA), also called hello, of the user dviererbe:

pull-ppa-source --ppa 'dviererbe/hello' 'hello'

• To download the latest version of the hello source package for the mantic release from
the same Launchpad PPA:

pull-ppa-source --ppa 'dviererbe/hello' 'hello' 'mantic'

• To download version 2.10-3 of the hello source package for the mantic release from
the same Launchpad PPA:

pull-ppa-source --ppa 'dviererbe/hello' 'hello' '2.10-3'

pull-debian-source

• To download the latest version of the hello source package from Debian:

pull-debian-source 'hello'

• To download the latest version of the hello source package for the sid release from
Debian:

pull-debian-source 'hello' 'sid'

• To download the version 2.10-3 of the hello source package from Debian:

pull-debian-source 'hello' '2.10-3'

apt-get source

The APT package manager can also fetch source packages.

14 of 146

Important

Source packages are tracked separately from binary packages via deb-src lines in the
sources.list(5)8 files. This means that you will need to add such a line for each repos-
itory you want to get source packages from; otherwise you will probably get either the
wrong (too old/too new) source package versions – or none at all.

Basic usage

apt

apt-get

apt source PACKAGE-NAME

You can find further information on the manual page apt(8)9.

apt-get source PACKAGE-NAME

You can find further information on the manual page apt-get(8)10.

Example

apt

apt-get

apt source 'hello'

apt-get source 'hello'

dget

The dget command is part of the devscripts package. If you call it with the URL of a .dsc or
.changes file it acts as a source package aware wget(1)11 and downloads all associated files
that are listed in the .dsc or .changes file (debian tarball, orig tarballs, upstream signatures).

Install

sudo apt update && sudo apt install devscripts

Basic usage

dget URL

8 https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
9 https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
10 https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
11 https://manpages.ubuntu.com/manpages/noble/en/man1/wget.1.html

15 of 146

https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
https://manpages.ubuntu.com/manpages/noble/en/man1/wget.1.html

Example

Go to Launchpad and select the package you want to download (in this example; the latest
version of the hello source package):

Next, copy the download link of the .dsc file:

16 of 146

Finally, call dget with the copied URL:

dget https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/hello/2.10-3/
hello_2.10-3.dsc

Note that this works for links from Debian and Launchpad Personal Package Archives too.

You can find further information on the manual page dget(1)12.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

12 https://manpages.ubuntu.com/manpages/noble/en/man1/dget.1.html

17 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/dget.1.html

2.1.2. Download a new upstream version
Once in a while you may need to download a new upstream release or check if a newer up-
stream release exists; for example:

• When fixing a bug, to rule out that a more recent version may have already fixed the
bug.

• As a source package maintainer , to check for, download, and package a newer upstream
release.

Most of the source packages contain a watch file in the debian folder. This is a configuration
file for the uscan(1)13 utility which allows you to automatically search HTTP or FTP sites or
git(1)14 repositories for newly available updates of the upstream project.

Note

If the source package does not contain a debian/watch file, there may be an explanation
and instructions in the debain/README.source or debian/README.debian file (if available)
that tell you how to proceed.

Best practices

You should download upstreamfile(s)manually only if there is no automatic downloadmech-
anism and you can’t find any download instructions.

Remember that a package may get distributed to hundreds of thousands of users. Humans
are the weakest link in this distribution chain, because we may accidentally miss or skip a
verification step, misspell a URL, copy the wrong URL or copy a URL only partially, etc.

If you still have to download upstream file(s) manually make sure to verify Cryptographic Sig-
natures (if available). The Signing Key of the upstream project should be stored in the source
package as debian/upstream/signing-key.asc (if the upstream project has a signing key).

uscan(1)15 verifies downloads against this signing key automatically (if available).

Download new upstream version (if available)

Running uscan(1)16 from the Root of the Source Tree will check if a newer upstream version
exists and downloads it:

uscan

If uscan(1)17 could not find a newer upstream version it will return with the exit code 1 and
print nothing to the Standard Output .

uscan(1)18 reads the first entry in debian/changelog to determine the name and version of
the source package.

13 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
14 https://manpages.ubuntu.com/manpages/noble/en/man1/git.1.html
15 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
16 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
17 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
18 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html

18 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/git.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html

You canalways add the --verboseflag to seemore information (e.g., which version uscan(1)19

found):

uscan --verbose

Check for new upstream version (no download)

If you just want to check if a new update is available, but you don’t want to download any-
thing, you can run the uscan(1)20 command with the --safe flag from the Root of the source
tree:

uscan --safe

Force the download

You can use the --force-download flag to download an upstream release from the upstream
project, even if the upstream Release is up-to-date with the source package:

uscan --force-download

Download the source of older versions from the upstream project

If you want to download the source of a specific version from the upstream project you can
use the --download-version flag.

Basic syntax:

uscan --download-version VERSION

For example:

uscan --download-version '1.0'

In the special case that youwant to download the source for the current version of the source
package from the upstream project you can use the --download-current-version flag in-
stead, which parses the version to download from the first entry in debian/changelog file:

uscan --download-current-version

Note

The --download-version and --download-current-versionflags are both a best-effort fea-
tures of uscan(1)21.

There are special cases where they do not work for technical reasons.

19 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
20 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
21 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html

19 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html

Note

In most cases you actually want to download the source from the Ubuntu Archive and not
re-download the source from the upstream project.

How to get the Source from the Archive? (page 12)

Further Information

• Manual page – uscan(1)22

• Debian wiki – debian/watch23

• Debian policy 4.6.2.0 – Upstream source location: debian/watch24

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.3. Build packages
In Ubuntu, packages can be built in several ways, depending on the intended artifacts. We
cover the following types of builds:

• Source and binary (using sbuild for a clean environment)

• Binary-only (using sbuild for a clean environment)

• Source-only (using debuild)

• Binary-only (using debuild and installed build dependencies)

(Many other backends are available, including an schroot-based backend.)

Only source uploads are permitted to PPAs or the archive. That being said, it is best practice
to perform a local build and iron out any potential issues prior to uploading it to any archive.

Prerequisites

$ sudo apt install sbuild debhelper ubuntu-dev-tools piuparts

All of the following sections assume you have already fetched the packaging and are in the
same directory as debian/.

For sbuild(1)25, follow the instructions on the Debian and Ubuntu sbuild pages as linked in
the Resources section.

22 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
23 https://wiki.debian.org/debian/watch
24 https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch
25 https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html

20 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://wiki.debian.org/debian/watch
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch
https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html

sbuild-based builds

This is the standard way of building a package for Ubuntu. All of the Debian and Ubuntu
infrastructure use sbuild(1)26, so it is beneficial to learn how to use it. Formore information
on setting up sbuild(1)27, refer to the links in the Resources section.

To do a binary-only build of a package using sbuild, run:

$ sbuild -c <RELEASE>-<ARCH>[-shm]

Note

It is possible to use -d instead of -c, but that causes the produced files to contain the en-
tire chroot name (<RELEASE>-<ARCH>[-shm]) instead of just <RELEASE>. An example chroot
name is noble-amd64-shm.

To explicitly run Lintian following the build:

$ sbuild -c <RELEASE>-<ARCH>[-shm] --run-lintian [--lintian-opts="-EvIiL +pedantic
"]

To build a package without running dh_clean(1)28, run:

$ sbuild -c <RELEASE>-<ARCH>[-shm] --no-clean-source

To build both a binary and a source package with one sbuild run:

$ sbuild -c <RELEASE>-<ARCH>[-shm] -s

Note

Launchpad rejects uploads that contains both binaries and sources. However, this is re-
quired for uploads to the Debian NEW queue. That being said, uploads to Debian with
binaries do not migrate to Testing29.

Here is a complete, working example of running the autopkgtest following the build:

$ sbuild -c noble-amd64-shm --run-autopkgtest \
--autopkgtest-virt-server=qemu \
--autopkgtest-virt-server-opt="/path/to/autopkgtest-noble-amd64.img" \
--autopkgtest-opt="--apt-pocket=proposed=src:qt6-base" \
--autopkgtest-opt="-U" --autopkgtest-opt="--ram-size=12000" \
--autopkgtest-opt="--setup-commands='apt-get -y install aptitude \

&& aptitude -t noble-proposed -y install qt6-base-dev=6.8.1+dfsg-0ubuntu1'"

26 https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html
27 https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html
28 https://manpages.ubuntu.com/manpages/noble/en/man1/dh_clean.1.html
29 https://lists.debian.org/debian-devel-announce/2019/07/msg00002.html

21 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dh_clean.1.html
https://lists.debian.org/debian-devel-announce/2019/07/msg00002.html

Building with debuild

debuild(1)30 (short for dpkg-buildpackage(1)31) is another tool used to build Debian pack-
ages. It is part of the debhelper(7)32 package and written in Perl.

Ubuntumaintain its own version the debhelperpackage. Therefore, packages built onDebian
may be slightly different than packages built on Ubuntu.

Source-only builds

To build a source packagewithout including the upstream tarball, run:

$ debuild -S -d

To build a source packagewith the upstream tarball, run:

$ debuild -S -d -sa

To build a source package without running Lintian, run:

$ debuild --no-lintian -S -d

Note

The --no-lintian flag only works in this case if it is first.

To build a source package without running dh_clean(1)33, run:

$ debuild -S -d -nc

Note

This tends to fix failures regarding missing build dependencies.

To build a source package without a cryptographic signature (not recommended), run:

$ debuild -S -d -us -uc

Local binary-only builds

This is really only useful for packages you need to test locally or packages with minimal build
dependencies. Otherwise use sbuild(1)34.

To do a binary-only build of a package, run:

30 https://manpages.ubuntu.com/manpages/noble/en/man1/debuild.1.html
31 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-buildpackage.1.html
32 https://manpages.ubuntu.com/manpages/noble/en/man7/debhelper.7.html
33 https://manpages.ubuntu.com/manpages/noble/en/man1/dh_clean.1.html
34 https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html

22 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/debuild.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-buildpackage.1.html
https://manpages.ubuntu.com/manpages/noble/en/man7/debhelper.7.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dh_clean.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/sbuild.1.html

$ debuild -b

Resources

• Chapter 6. Building the package (Debian NewMaintainers’ Guide)35

• SimpleSbuild (Ubuntu Wiki)36

• sbuild (Debian Wiki)37

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.4. Install built packages
You have a built binary packages of a source package and want to install it (e.g. to test the
packages). This article demonstrates multiple ways how you can achieve that.

Using your package manager

You can use the apt(8)38, apt-get(8)39 or dpkg(1)40 package manager to install or uninstall
packages on an Ubuntu installation.

Note

apt(8)41 is intended to be used interactively by humans and does not guarantee a stable
command line interface (suitable for machine-readability) while apt-get(8)42 is intended
for unattended usage, for example, in scripts.

dpkg(1)43 is a package manager for Debian-based systems. It can install, remove, and
build packages, but unlike theAPT packagemanagement systems, it cannot automatically
download and install packages or their dependencies.

See also the package management44 guide from the Ubuntu Server documentation for
more details.

35 https://www.debian.org/doc/manuals/maint-guide/build.html
36 https://wiki.ubuntu.com/SimpleSbuild
37 https://wiki.debian.org/sbuild
38 https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
39 https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
40 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
41 https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
42 https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
43 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
44 https://ubuntu.com/server/docs/package-management

23 of 146

https://www.debian.org/doc/manuals/maint-guide/build.html
https://wiki.ubuntu.com/SimpleSbuild
https://wiki.debian.org/sbuild
https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt-get.8.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
https://ubuntu.com/server/docs/package-management

Install .deb files

apt

apt-get

dpkg

You can install one or multiple .deb files by using apt install command:

sudo apt install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo apt install 'hello_2.10-3_amd64.deb'

You can install one or multiple .deb files by using apt-get install command:

sudo apt-get install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo apt-get install hello_2.10-3_amd64.deb

You can install one or multiple .deb files by using dpkg --install command:

sudo dpkg --install PACKAGE.deb...

For example, to install the hello_2.10-3_amd64.deb binary package file (version 2.10-3 of the
hello package for the amd64 architecture) you need to run:

sudo dpkg --install hello_2.10-3_amd64.deb

Uninstall packages

Installed packages often setup configurationfiles and create other datafiles. When youwant
to uninstall a package you have to decide if you want to keep these files or want to delete
them too.

Keeping configuration files can be useful to avoid having to reconfigure a package if it is
reinstalled later, but this may have side-effects when testing to install multiple packages.

Keep the configuration files

apt

apt-get

dpkg

You can uninstall one ormultiple packages and keep their configuration files by using the apt
remove command:

24 of 146

sudo apt remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo apt remove hello

You can uninstall one or multiple packages and keep their configuration files by using the
apt-get remove command:

sudo apt-get remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo apt-get remove hello

You can uninstall one or multiple packages and keep their configuration files by using the
dpkg --remove command:

sudo dpkg --remove PACKAGE-NAME...

For example, to uninstall the currently installed hello package and keep its configuration
files you need to run:

sudo dpkg --remove hello

Delete the configuration files

apt

apt-get

dpkg

You can uninstall one or multiple packages and delete their configuration files by using the
apt purge command:

sudo apt purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

sudo apt purge hello

You can uninstall one or multiple packages and delete their configuration files by using the
apt-get purge command:

sudo apt-get purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

25 of 146

sudo apt-get purge hello

You can uninstall one or multiple packages and delete their configuration files by using the
dpkg --purge command:

sudo dpkg --purge PACKAGE-NAME...

For example, to uninstall the currently installed hello package and delete its configuration
files you need to run:

sudo dpkg --purge hello

Install packages from a PPA

Using add-apt-repository

The add-apt-repository command adds a Repository (e.g. a Personal Package Archive (PPA)
from Launchpad) to the /etc/apt/sources.list.d directory (see the sources.list(5)45man-
ual page formore details), so you can install the packages provided by the repository like any
other package from the Ubuntu Archive.

sudo add-apt-repository ppa:LP-USERNAME/PPA-NAME

LP-USERNAME
The username of the Launchpad user who owns the PPA.

PPA-NAME
The name of the PPA.

Forexample, to add theLaunchpadPPAwith thename helloof theLaunchpaduser dviererbe
you need to run:

sudo add-apt-repository ppa:dviererbe/hello

Then, you can install, just as normal, the hello package contained in the PPA:

apt

apt-get

sudo apt install hello

sudo apt-get install hello

See the add-apt-repository(1)46 manual page for more details.

Add PPA manually

When you visit the web interface of the Launchpad PPA you want to add, you can see a text
reading something like “Technical details about this PPA”. When you click on the text, it will
unfold and show the details you need to add the PPA.

45 https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
46 https://manpages.ubuntu.com/manpages/noble/en/man1/add-apt-repository.1.html

26 of 146

https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/noble/en/man1/add-apt-repository.1.html

The steps to add the PPA are as follows:

1. Add the PPA entry to /etc/apt/sources.list.d directory

sudo editor /etc/apt/sources.list.d/launchpad_ppa.sources

Add the following lines (substituting LAUNCHPAD-USERNAME AND PPA-NAME for your own
case) and save the file:

deb https://ppa.launchpadcontent.net/LAUNCHPAD-USERNAME/PPA-NAME/ubuntu
SERIES main
deb-src https://ppa.launchpadcontent.net/LAUNCHPAD-USERNAME/PPA-NAME/ubuntu
SERIES main

2. Add the of the PPA Signing Key to /etc/apt/trusted.gpg.d directory.

The following command will download the PPA signing key from the Ubuntu Keyserver
and store it in the correct format in the /etc/apt/trusted.gpg.d directory. Substitute
SIGNING_KEYwith the Fingerprint (see picture above) of the PPA signing key.

wget --quiet --output-document - \
"https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x${SIGNING_KEY,,}" \
| sudo gpg --output /etc/apt/trusted.gpg.d/launchpad-ppa.gpg --dearmor -

3. Update the package information:

apt

apt-get

sudo apt update

27 of 146

sudo apt-get update

4. Install the package from the PPA:

apt

apt-get

sudo apt install PACKAGE-NAME

sudo apt-get PACKAGE-NAME

For example, here is the full script to add the Launchpad PPA named hello of the user
dviererbe and install the hello package from it.

sudo sh -c 'cat <<EOF > /etc/apt/sources.list.d/launchpad_ppa2.sources
deb https://ppa.launchpadcontent.net/dviererbe/hello/ubuntu mantic main
deb-src https://ppa.launchpadcontent.net/dviererbe/hello/ubuntu mantic main
EOF'

SIGNING_KEY=C83A46831F1FE7AB597E95B9699E49957C59EA64
wget --quiet --output-document - \
"https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x${SIGNING_KEY,,}" \
| sudo gpg --output /etc/apt/trusted.gpg.d/launchpad-ppa.gpg --dearmor -

sudo apt update
sudo apt install hello

Download the .deb files

You can also download binary packages (.deb files) from a Launchpad PPA and install them
with a package manager (like demonstrated in the section Install .deb files (page 24)).

Using pull-ppa-debs

The pull-ppa-debs command downloads the .deb files of one specific binary package or all
binary packages, which are built by a source package in a Launchpad PPA.

pull-ppa-debs --ppa LP-USERNAME/PPA-NAME [--arch ARCH] PKG-NAME [SERIES|VERSION]

--ppa LP-USERNAME/PPA-NAME
The PPA to download the binary package(s) from.

LP-USERNAME
The username of the Launchpad user who owns the PPA.

PPA-NAME
The name of the PPA.

--arch ARCH
The architecture of the binary package(s) to download. Defaults to the system archi-
tecture of your host machine.

28 of 146

PKG-NAME
The name of the package to download. This can be the name of the source package
to download all binary packages build by the source package or just the name of one
specific binary package.

SERIES
Downloads the package with the latest version that targets the Ubuntu Series with the
specified name. Defaults to the Current Release in Development .

VERSION
The version of the package to download.

The pull-ppa-debs command is part of the ubuntu-dev-tools package. You need to install it,
before you can use it:

sudo apt install ubuntu-dev-tools

Tip

The ubuntu-dev-tools package also provides the commands:

• pull-lp-debs (to download binary packages from Launchpad) and

• pull-debian-debs (to download binary packages from the Debian archive).

For example, on an amd64 machine, the following command will download the binary pack-
age named hello and targeting amd64 from the Launchpad PPA named hello of the Launch-
pad user dviererbe:

pull-ppa-deb --ppa dviererbe/hello hello

The downloaded file will be hello_2.10-3_amd64.deb.

See the pull-pkg(1)47 manual page for more details.

Using the Launchpad web interface

You can download .deb files from a Launchpad PPA via the web interface like this:

1. Go to the Launchpad PPA web interface and click on the link called “View package de-
tails”:

47 https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

29 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

2. Expand thedetails of thepackage youwant todownloadby clickingon the little triangle
next to the name of the package:

3. Download the file(s) you need from the “Package files” section by clicking on the re-
spective links:

30 of 146

Resources

• Ubuntu Server documentation – Package management48

• Ubuntu wiki – Installing Software49

• manual page add-apt-repository(1)50

• manual page pull-pkg(1)51

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

48 https://ubuntu.com/server/docs/package-management
49 https://help.ubuntu.com/community/InstallingSoftware
50 https://manpages.ubuntu.com/manpages/noble/en/man1/add-apt-repository.1.html
51 https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

31 of 146

https://ubuntu.com/server/docs/package-management
https://help.ubuntu.com/community/InstallingSoftware
https://manpages.ubuntu.com/manpages/noble/en/man1/add-apt-repository.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/pull-pkg.1.html

2.1.5. Run tests

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.6. Upload packages to a PPA

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.7. Patch management
This article demonstrates how tomanage the patches of a source package in the 3.0 (quilt)
format.

See the patches explanation article (page 56) formorebackground information about patches
in the context of Ubuntu.

Note

If the format is 3.0 (native), this article is not of interest for you and simply write your
changes to the files. There is no need to explicitly create and track a patch for native
packages. See the package model (page 51) article for more information about package
formats.

As the source package format implies, wewill use the quilt(1)52 tool tomanage the patches
of a source package. Quilt manages patches like a Stack. It maintains a list of patches (also
called “series”) that get applied one after another from top to bottom in the order they are
listed in debian/patches/series, excluding lines starting with #.

Important

Quilt will create a .pc/ directory at the source package root directory. This is the location
where Quilt will store control files similar to the .git/ folder of a Git repository.

52 https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

32 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

Before you commit any changes (e.g., with git-ubuntu) or attempt to build the source pack-
age, do not forget to unapply all patches and delete the directory:

quilt pop -a && rm -r .pc

You can avoid removing .pc if it exists in the .gitignore file, or if you can otherwise avoid
it when running git add.

Prerequisites

If you haven’t already, install quilt(1)53:

sudo apt update && sudo apt install quilt

By running the following script once in a terminal you will configure quilt(1)54 to look for
patches in the debian/patches/ directory if the quilt command is invoked within a source
package directory:

cat <<'EOF' > ~/.quiltrc
#!/usr/bin/env bash
set -euo pipefail

find the root of a debian source tree:
SourcePackageRoot="${PWD}"
while [! -s "$SourcePackageRoot/debian/source/format"]
do

if ["${SourcePackageRoot}" = '/']
then

echo -e '\033[1;33mWARNING\033[0m: You are not in a debian source tree!'
exit 0

fi

SourcePackageRoot="$(readlink --canonicalize-existing "${SourcePackageRoot}/..
")"
done

if ! grep --silent --fixed-strings '3.0 (quilt)' \
"${SourcePackageRoot}/debian/source/format"

then
echo -e '\033[1;33mWARNING\033[0m: This source package does \033[1mNOT\033[0m

use the 3.0 (quilt) format. The corresponding defaults defined in ~/.quiltrc do
not get applied.'

exit 0
fi

tell quilt where to find patches for a 3.0 (quilt) source package
: "${QUILT_PATCHES:="${SourcePackageRoot}/debian/patches"}"

create the quilt control files directory at the root of the source package
(continues on next page)

53 https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html
54 https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

33 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

(continued from previous page)

: "${QUILT_PC:="${SourcePackageRoot}/.pc"}"

default options for the patch(1) tool
: "${QUILT_PATCH_OPTS:="--reject-format=unified"}"

how quilt output should be colored
: "${QUILT_COLORS:="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:diff_
ctx=35:diff_cctx=33"}"

set default arguments for quilt commands:
: "${QUILT_DIFF_ARGS:="-p ab --no-timestamps --no-index --color=auto"}"
: "${QUILT_PATCHES_ARGS:="--color=auto"}"
: "${QUILT_PUSH_ARGS:="--color=auto"}"
: "${QUILT_REFRESH_ARGS:="-p ab --no-timestamps --no-index"}"
: "${QUILT_SERIES_ARGS:="--color=auto"}"
EOF

Note

If you later want to undo this configuration – simply delete ~/.quiltrc:

rm ~/.quiltrc

List patches

List all available patches:

quilt series

This will also color code which patches are applied (green), which patch is the latest applied
patch (yellow) and which patches are unapplied (white).

List applied patches:

quilt applied

Display the topmost applied patch:

quilt top

List unapplied patches:

quilt unapplied

Note

Quilt patches are applied from top to bottom in the order they are listed.

34 of 146

Apply patches

Apply the next patch:

quilt push

Apply all patches:

quilt push -a

Apply the next N patches

quilt push N

Apply all patches until (including) a specific patch:

quilt push PATCH-NAME

This can also be the path of the patch (allowing for auto-completion):

quilt push debian/series/PATCH-NAME

Unapply patches

This works similar to applying patches.

Unapply the patch on top:

quilt pop

Unapply all patches:

quilt pop -a

Unapply the N topmost applied patches

quilt pop N

Unapply all patches until (excluding) a specific patch:

quilt pop PATCH-NAME

This can also be the path of the patch (allowing for auto-completion):

quilt pop debian/series/PATCH-NAME

Verify patches

Now that we know how to apply and unapply patches we can verify if all patches apply and
unapply cleanly. This can be useful when you merge changes from Debian into an Ubuntu
package and want to check if everything is still in order.

1. We verify that all patches apply cleanly:

35 of 146

quilt push -a

2. We verify that all patches unapply cleanly:

quilt pop -a

3. (optional) We remove the Quilt control file folder:

rm -r .pc

Show details about a patch file

Print the header of the topmost applied or specified patch:

quilt header [PATCH-NAME]

Print the list of files that the topmost applied or specified patch changes:

quilt files [PATCH-NAME]

Print the changes by the topmost applied or specified patch to the specified file(s) in a diff
format. If no files are specified, all files that are changes are included.

quilt diff [-P PATCH-NAME] [FILE-PATH ...]

Rename a patch file

Rename the topmost applied or specified patch:

quilt rename [-P PATCH-NAME] NEW-PATCH-NAME

Remove a patch file

Remove the topmost applied or specified patch from the debian/patches/series file. Use -r
to also delete the patch file from the debian/patches directory:

quilt delete [-r] [PATCH-NAME]

Generate a patch file

1. Create a new patch after the topmost applied patch:

quilt new PATCH-NAME

Note

It is best practice to read the existing patch-file-names in debian/patches and ensure
your new patch name is consistent with the existing ones.

2. Edit files outside the debian/ directory by following the same steps as outlined by the
following section Edit a patch file (page 37).

36 of 146

Edit a patch file

1. Apply all patches until the patch we want to edit:

quilt push PATCH-NAME

2. There are multiple approaches how to edit the patch file:

• Edit the patch header:

quilt header -e

Tip

If the patch does not already have a header and you want to add one; add the
--dep3 flag to insert a DEP 3 patch header template:

quilt header --dep3 -e

Tip

See the DEP 3 – Patch file headers reference (page 99) which lists and briefly
explains standard DEP 3 compliant fields and shows sample DEP 3 compliant
headers.

• Edit specific file(s) with a text editor after adding the changes to the patch file:

quilt edit FILE-PATH ...

Note

Opens the files in $EDITOR – this is usually your default terminal editor.

• Edit specific file(s) manually (without immediately opening an editor):

a. Check which files are already changed by the patch file:

quilt files

b. If youwant to edit file(s) that the patch currently doesNOT change – add these
files to the patch before editing them:

quilt add FILE-PATH ...

Note

You can directly edit files which are already changed by the patch.

37 of 146

Tip

To see the changes of the patch file to a specific file:

quilt diff FILE-PATH

To see the changes you made of the patch file:

quilt diff -z

c. Save the changes to the patch file:

quilt refresh

• Delete the changes of a patch to specific file(s):

quilt remove FILE-PATH ...

3. (recommended) If there are patches after the patch you have edited – verify that all
patches still apply cleanly (page 35).

Import a patch file

Insert patch files following the current topmost applied patch:

quilt import PATCH-FILE-PATH ...

Important

The patch files have to be outside the debian/patches/ directory.

Note

The imported patches do not get applied automatically. You must apply the patches
(page 35) after importing them.

Resources

• DEP 3 – Patch file headers (reference) (page 99)

• Patches (explanation) (page 56)

• manual page quilt(1)55

• Debian wiki – Using quilt in Debian source packages56

Caution

55 https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html
56 https://wiki.debian.org/UsingQuilt

38 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html
https://wiki.debian.org/UsingQuilt

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.8. Propose changes
This guide walks you through the process for proposing changes to Ubuntu. The process is
straightforward. When you find a problem, you obtain the code, work on a solution, test the
fix, push your changes to Launchpad , and then request a review and merge.

Attention

There are information placedwithin angle brackets in this guide. Ensure you replace them
with the appropriate values. For example, replace <package-name> with the name of the
package you are working on.

Find a bug to fix

Start by identifying an issue to work on. This can be a bug you encountered while using an
application, a problem described in a bug report, or a known issue in the Ubuntu community.

You can also explore known bugs using these resources:

• Bitesize bugs on Launchpad57: These are small, well-scoped bugs that are great for new
contributors.

• One Hundred Papercuts58: This resource focuses on fixing minor bugs that negatively
affect the user experience.

• Launchpad’s bug tracker59 and Debian’s bug trackers60: These contain issue reports for
Ubuntu and Debian packages.

Evaluate the bug report

Once you find a bug report on Launchpad that you want to work on, the next step is to eval-
uate the bug.

Read the bug description carefully and look for:

• steps to reproduce the problem

• crash logs or terminal output

• details about the affected version and package

• attached .crash files or Apport crash files61

57 https://bugs.launchpad.net/ubuntu/+bugs?field.tag=bitesize
58 https://launchpad.net/hundredpapercuts
59 https://bugs.launchpad.net/ubuntu
60 https://www.debian.org/Bugs/
61 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageFixing.md#

evaluate-the-bug

39 of 146

https://bugs.launchpad.net/ubuntu/+bugs?field.tag=bitesize
https://launchpad.net/hundredpapercuts
https://bugs.launchpad.net/ubuntu
https://www.debian.org/Bugs/
https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageFixing.md#evaluate-the-bug

For example, this bug report62 shows a segmentation fault in postconf on Ubuntu 18.04. It
includes logs from /var/log/kern.log, shell commands that reproduce the issue, and meta-
data about the system environment. This information helps confirm whether the bug still
affects current versions and if the report is complete.

If the bug includes a .crash file, extract and inspect the stack trace. Use the information to
better understand where the failure occurred in the code.

For more details, see Evaluate the bug63.

Identify the source package

After selecting a bug to fix, the first step is to identify the source package that contains the
code related to the issue.

Start by identifying the name of the binary package. If you know the path or part of the
filename of the affected program, run the following command:

apt-file find <filename-or-path>

Note

Replace <filename-or-path>with either the full path or part of the filename.

For example, both of the following work:

apt-file find /usr/games/bumprace
apt-file find bumprace

Running the command returns an output similar to:

bumprace: /usr/games/bumprace

In the preceding output, the part before the colon is the name of the binary package.

After identifying the name of the binary package, the next step is to find the source package.
Use the following command:

apt show <binary-package-name>

Note

Replace <binary-package-name>with the actual name of the binary package.

For example:

apt show bumprace

Now check the output for the Source field. This field indicates the name of the source pack-
age.

62 https://bugs.launchpad.net/ubuntu/+source/postfix/+bug/1753470
63 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageFixing.md#

evaluate-the-bug

40 of 146

https://bugs.launchpad.net/ubuntu/+source/postfix/+bug/1753470
https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageFixing.md#evaluate-the-bug

It’s possible for the name of a binary package to be the same as its source package. If this
is the case, then the apt show <binary-package-name> command won’t display the Source
field in its output. In such cases, you can assume the source package name is the same as the
binary package name.

Check if the bug has been fixed

Once you identify the source package, make sure the issue still exists. A fixmay already exist
in a newer Ubuntu release, in Debian, or upstream. Checking first will save time and avoid
duplicate work.

Follow the steps in the following subsections to checkwhether the problemhas already been
addressed.

Check if the bug is fixed in a newer Ubuntu

Use rmadison to review the versions of the package available across Ubuntu releases.

rmadison <package-name>

This shows you which versions are available in different Ubuntu series. Look for a newer ver-
sion than the one you are using. If a fixwas introduced in a later version, check the changelog
or commit history to verify.

To review changes, clone the package with git ubuntu:

git ubuntu clone postfix postfix
cd postfix
git log -b pkg/ubuntu/<ubuntu-series>

Look through the commit messages and patch files to identify if the issue has been resolved.

Check if the bug is fixed in Debian

Debian is a key source for Ubuntu packages. Search for bug reports or patches applied there.

First, check Debian’s bug tracker using the URL https://bugs.debian.org/
src:<package-name>.

To inspect changes in more detail, find the source repository used by Debian. You can do this
in a few ways:

• use debcheckout:

debcheckout <package-name>
cd <package-name>
git log

• look for the Vcs-Git and Vcs-Browser fields from the apt showsrc command output.
These point to the package’s source code repository and its web interface:

apt showsrc --only-source <package-name>

Now, look for commit messages that describe fixes relevant to your issue. If a bug number is
referenced, open the link and review the context.

41 of 146

Check if the bug is fixed upstream

If the problemoriginates from the software itself and not the package, investigate upstream.
Each project has its own bug tracker and code repository.

You can find the upstream project by doing the following:

• search the package homepage listed by running the command apt show <package>

• look up the project through web search if no homepage is set

• check the metadata in the package description or Debian tracker

Once you find the upstream repository, do the following:

1. look through open and closed issues

2. search the commit history for relevant fixes

3. clone the upstream Git repository if available and inspect the logs

If upstreamhas resolved the problem, consider if that version has reachedDebian or Ubuntu.
If not, you may propose packaging the new version or backporting the patch.

Offer to help

Once you confirm the issue still exists, a bug report is open, and no one is working on it, you
can offer to help. This step signals your interest in resolving the issue and helps prevent
duplicated efforts.

Start by commenting on the bug report in Launchpad. Let others know that you intend to
work on the issue. Include any relevant details you have, such as:

• when and how the bug occurred

• how you plan to fix the issue, or what you’ve tried so far

• any testing you’ve done or plan to do

If the bug doesn’t yet exist in Launchpad, create a new bug report. Provide a clear title and
description. Explain how the issue can be reproduced, and add logs or screenshots if helpful.

Get the source code

Once you’re assigned to the bug, get the source code for the affected package. You can get
the source code using any of these four methods:

• git-ubuntu

• pull-pkg

• apt-get source

• dget

For detailed instructions on using these methods to get the source code, see Get the source
of a package (page 12).

42 of 146

Create a patch to fix the issue

Youmay need to create a patch to make changes to a package. Start by checking where your
changes are located. If your changes are only within the debian/ directory, for example, in
debian/control, you don’t need to create a patch. However, if you changed upstream source
code, that is anything outside debian/, then youmust create a patch and include it in debian/
patches.

There are two main methods for creating patches for Ubuntu packages. The method you
choose will depend on the workflow that the package source uses:

• If the package uses quilt, use the quilt tool to create and manage patches. To learn
how to create a patch using quilt, see Making a patchfile64.

• If the package is maintained using git-ubuntu, commit your changes directly in Git.

Document the fix

It’s important to document your changes so future developers can understand your reason-
ing and assumptions without having to guess.

Explain your changes in the debian/changelog file. This file tracks every change uploaded to
Ubuntu or Debian, and future developers rely on it to understand what changed, where it
happened, and why.

Run the following command to create a new changelog entry:

dch -i

This command generates a new entry and opens your text editor. The top and bottom lines
will be filled out for you automatically. The top line includes the package name, version,
Ubuntu release, and urgency. The bottom line shows your name, email, and a timestamp.

You should also write a short and informative message between the top and bottom lines.
This message should include:

• where you made the change, such as file or component

• what the change does

• why you made the change

• link to the Launchpad bug or mailing list discussion, if available

An example of the changelog entry is as follows:

my-package <version> UNRELEASED; urgency=low

* fix crash in system monitor when reading temperature sensors
- updated <script.py> to handle missing sensor values
- added error handling to prevent crashes

-- name <name@example.com> Tue, 13 May 2025 15:42:10 +0000

Reference Launchpad bugs like this:
64 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/DebianPatch.md

43 of 146

https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/DebianPatch.md

LP: #<bug-number>

This ensures the bug will close automatically when the fix is uploaded.

Test the fix

Run package tests to check that your change doesn’t introduce regressions. Ubuntu uses
autopkgtest to automate this process. You can run tests in several ways:

• in a local virtual machine (VM)

• through a Personal Package Archive (PPA) on Launchpad

• in a container

For local testing, use a VM or container. The autopkgtest tool builds test images and runs the
tests in an isolated environment. Use this method when you want to debug failures or verify
changes before uploading to a PPA. If your testbed needs to reboot or be isolated, use a VM
or container as defined in the package’s debian/tests/control file.

You can also use PPA-based method whenever possible. It produces results closest to what
Launchpad runs for archive packages. After uploading your package to a PPA and building it,
you can trigger tests using the PPA tool from ppa-dev-tools. Youwill need special permissions
to launch these tests. Ask for help in the #ubuntu-devel IRC channel if needed.

To learn how to set up and run these test methods, see Running package tests65.

Submit the fix

Once you’ve documented and saved your changes in a new changelog entry, run debuild:

debuild -S -d

The command signs the changes in the file. After that, you can submit your fix by opening
a merge proposal. For details on how to do this, see the section on Merge proposal66 in the
Ubuntu Maintainer’s Handbook.

In many cases, Debian would benefit from the fix as well. Submitting to Debian is considered
best practice because it ensures that a wider audience receives the fix. You can submit the
fix to Debian by running:

submittodebian

Running thepreceding commandwalks you througha series of steps toensure thebug report
ends up in the correct place. Be sure to review the diff again to confirm it doesn’t include
unrelated changes you made earlier.

Also, ensure you add a clear description of the fix to the inclusion request.

If everything goes well, you will get an email from Debian’s bug tracking system with more
information. This may take a few minutes.

Sometimes it’s best to get your fix included in Debian first. It will then flow down to Ubuntu
automatically. In that case, skip the following steps.

65 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageTests.md
66 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/MergeProposal.md

44 of 146

https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageTests.md
https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/MergeProposal.md

For security updates or updates to stable releases, the fix might already be in Debian or in-
tentionally ignored. In these cases, follow the process described here.

If you’re doing a security or stable release update, read the article on Security and stable
release updates.

You can also follow this process when dealing with Ubuntu-only packages that don’t build
correctly, or with issues that affect Ubuntu specifically.

If you’re submitting your fix to Ubuntu, generate a debdiff. A debdiff shows the difference
between two Debian source packages. The command is also called debdiff, and it comes
from the devscripts package. For full details, see the manpages for debdiff67.

To compare two source packages, use the .dsc files as arguments:

debdiff <package_name>_1.0-1.dsc <package_name>_1.0-1ubuntu1.dsc

Compare the original .dsc file with the one you generated after making your changes. This
will generate a patch that your sponsor can then apply locally by using patch -p1 < /path/
to/debdiff. In this case, pipe the output of the debdiff command to a file and attach it to
the bug report:

debdiff <package_name>_1.0-1.dsc <package_name>_1.0-1ubuntu1.dsc > 1-1.0-1ubuntu1.
debdiff

The format of the filename shown in 1-1.0-1ubuntu1.debdiff has some meaning:

1. 1- tells the sponsor that this is the first revision of your patch.

2. 1.0-1ubuntu1 shows the version you are working on.

3. .debdiffmakes it clear that it’s a debdiff file.

While this format is optional, it works well and you can use it.

Next, go to the bug report on Launchpad. Log in, then click Add attachment or patch near
the comment box. Attach the debdiff and leave a comment. Explain how the patch can be
applied and what testing you’ve done.

Here’s an example:

This is a debdiff for Artful applicable to 1.0-1. I built this in pbuilder and it
builds successfully, and I installed it, the patch works as intended.

Mark the attachment as a patch. This will notify the Ubuntu Sponsors team. Also, make sure
you’re subscribed to the bug report so you get updates.

You will usually get a review within a few hours to a few weeks. If it takes too long, join
#ubuntu-motu on Libera Chat and ask for help. Stay in the channel until someone responds.
They will guide you through your next steps.

After review, the sponsor might upload your fix, request changes, or reject it. If changes are
needed, follow the same steps and submit a new debdiff to the bug. If the fix is rejected
because it’s not a fit for Ubuntu, you might need to send it to Debian instead.

67 https://manpages.debian.org/testing/devscripts/debdiff.1.en.html

45 of 146

https://manpages.debian.org/testing/devscripts/debdiff.1.en.html

If you have questions, email ubuntu-motu@lists.ubuntu.com or join #ubuntu-motu on Libera
Chat. Youwill find people who share your passion for improving open source andmaking the
world better.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.9. Use schroots

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.10. Request a freeze exception

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.11. Merge a package from Debian
This article is still work in progress. You can use the Ubuntu Maintainer Handbook68 in the
meantime.

Note

Be aware that the Ubuntu Maintainer Handbook was written for server team and not a
general audience.

68 https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageMerging.md#
build-source-package

46 of 146

https://github.com/canonical/ubuntu-maintainers-handbook/blob/main/PackageMerging.md#build-source-package

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

2.1.12. Extract packages
This article demonstrates how to extract the contents of Debian packages.

See also the article Packagemodel (page 51) for a deeper understanding of package formats.

Extract a source package

This section demonstrates how to extract the content of a source package.

Note

A source package archive has the file extension .dsc. See also the manual page dsc(5)69

for further information.

Important

Make sure that you have the dpkg-dev package installed. To install it, run the following
commands in a terminal:

sudo apt update && sudo apt install dpkg-dev

Run the following command in a terminal:

dpkg-source --extract SOURCE-PACKAGE.dsc [OUTPUT-DIRECTORY]

SOURCE-PACKAGE.dsc
The path to the source package control file.

OUTPUT-DIRECTORY (optional)
The path to the directory where to extract the content of the source package to. This
directory must not exist. If no output directory is specified, the content is extracted
into a directory named NAME-VERSION (where NAME is the name of the source package
and VERSION its version) under the current working directory.

See the manual page dpkg-source(1)70 for further information.

69 https://manpages.ubuntu.com/manpages/noble/en/man5/dsc.5.html
70 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html

47 of 146

https://manpages.ubuntu.com/manpages/noble/en/man5/dsc.5.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html

Extract a binary package

This section demonstrates how to extract the content a binary package.

Note

A binary package archive has the file extension .deb. See also the manual page deb(5)71

for further information.

Run the following command in a terminal:

dpkg-deb --extract BINARY-PACKAGE.deb OUTPUT-DIRECTORY

BINARY-PACKAGE.deb
The path to the binary package control file.

OUTPUT-DIRECTORY
The path to the directory where to extract the content of the binary package to. In
comparison to Extract a source package (page 47), this directory can already exist and
even contain files.

See the manual page dpkg-deb(1)72 for further information.

Tip

Using --vextract instead of --extract also outputs a list of the extracted files to standard
output .

To just list the files that the package contains, use the --contents option:

dpkg-deb --contents BINARY-PACKAGE.deb

Tip

You can also replace dpkg-deb with dpkg for the examples demonstrated here. dpkg for-
wards the options to dpkg-deb. See the manual page dpkg(1)73 for further information.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

71 https://manpages.ubuntu.com/manpages/noble/en/man5/deb.5.html
72 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-deb.1.html
73 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html

48 of 146

https://manpages.ubuntu.com/manpages/noble/en/man5/deb.5.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-deb.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html

3. Explanation
Our explanatory and conceptual guides arewritten to provide a better understanding of how
packaging works in Ubuntu. They enable you to expand your knowledge and become better
at packaging and development.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.1. Upstream and downstream
An Ubuntu installation consists of packages - copied and unpacked onto the target ma-
chine. TheUbuntuproject packages, distributes andmaintains softwareof thousandsofopen
source projects for users, ready to install. The collection of Ubuntu packages is derived from
the collection of packages maintained by the community-driven Debian project.

An important duty of an Ubuntu package Maintainer is to collaborate with the open source
projects the Ubuntu packages are derived from – especially with Debian. We do this by keep-
ing the Ubuntu copies of packages up-to-date and by sharing improvements made in Ubuntu
back up to Debian.

3.1.1. Terminology
In the context of open source software development, the analogy of a stream that carries
modifications, improvements, and code is used. It describes the relationship and direction of
changes made between projects. This stream originates (upwards) from the original project
(and related entities like Source Code, authors, and maintainers) and flows downwards to
projects (and associated entities) that depend on it.

Ubuntu delta

Ubuntu delta (noun):
A modification to an Ubuntu package that is derived from a Debian package.

Upstream

Upstream (noun):
A software project (and associated entities) that another software project depends on
either directly or indirectly.

Examples:

• Debian is the upstream of Ubuntu.

49 of 146

• Upstream is not interested in the patch.

Usage note:

• There can bemany layers. For example,Kubuntu is aflavour of Ubuntu, there-
fore Ubuntu and Debian are both upstreams of Kubuntu.

• The adjective/adverb form is much more commonly used.

Upstream (adjective, adverb):
Something (usually a code modification like a patch) that flows in the direction or is
relative to a software project closer to the original software project.

Examples:

• Debian is the upstream project of Ubuntu.

• There is a new upstream release.

• A pull request was created upstream.

• A bug was patched upstream.

upstream (verb):
Sending something (usually a patch) upstream that originated from a Fork or project
that depended on the upstream project.

Examples:

• We upstreamed the patch.

• Can you upstream the bugfix?

Downstream

Downstream (noun):
Similar to Upstream (noun): (page 49) A software project(s) (and associated entities)
that depend on another software project either directly or indirectly.

Example:

• Ubuntu is a downstream of Debian and there are many downstreams of
Ubuntu.

Usage note:

• The adjective/adverb form (page 50) is much more commonly used.

• There can bemany layers. For example,Kubuntu is a flavour of Ubuntu, there-
fore Kubuntu and Ubuntu are both downstreams of Debian.

Downstream (adjective, adverb):
Similar to Upstream (adjective, adverb): (page 50) Something (usually a code modifica-
tion like a patch) that flows in the direction or is relative to a software project farther
away from the original software project.

Examples:

• Ubuntu is a downstream project of Debian.

• The bug is already patched downstream.

• The bug was reported by a downstream user.

50 of 146

• Downstreammaintainers have submitted a bugfix.

• The change may affect downstream users.

Downstream (verb):
Similar to upstream (verb): (page 50) Sending something (usually a patch) downstream
that originated from an upstream project.

Example:

• We downstreamed the patch.

3.1.2. Why do we upstream changes?

Note

The following list does not aim for completeness. There are plenty of other good argu-
ments for why changes should be upstreamed.

• Decreasedmaintenance complexity: Think of any Ubuntu package derived from aDe-
bian package that carries a delta. Every time the Debian package gets updated, the
Ubuntu package may be subject to a merge conflict when the changes to the Debian
package get applied to the Ubuntu package. By upstreaming changes we reduce the
maintenance cost to resolve merge conflicts when they occur.

• Quality assurance and security: Any changes that get upstreamed will also be sub-
ject to the quality assurance of the upstream project and the testing coverage that the
user base of the upstream project provides. This increases the likelihood of discover-
ing regressions/bugs/unwanted behaviour (especially security-related bugs). Also, be
aware that an unpatched security vulnerability in any system could lead to the indirect
exposure of other systems.

• Mutual benefit: By syncing the Debian packages into the Ubuntu package collection,
Ubuntu benefits from the upstreammaintenance work. In exchange, UbuntuMaintain-
ers upstream changes to Debian. This results in a win-win situation where both parties
benefit from working together.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.2. Package model
Because Ubuntu is based on the community-driven Debian project, Ubuntu uses the Debian
packaging model/format.

This consists of source packages (page 52) and binary packages (page 56).

51 of 146

3.2.1. Source packages
A source package contains the source material used to build one or more binary packages.

A source package is composed of:

• a Debian Source Control (.dsc) file,

• one or more compressed tar files, and

• optionally additional files depending on the type and format of the source package.

The Source Control file contains metadata about the source package, for instance, a list of
additional files, name and version, list of the binary packages it produces, dependencies, a
digital signature and many more fields.

Note

The basic overview of the debian/ directory (page 84) article showcases the layout of an
unpacked source package.

Source package formats

There are multiple formats for how the source is packaged. The format of a source package
is declared in the debian/source/format file. This file should always exist. If this file can not
be found, the format 1.0 (page 55) is assumed for backwards compatibility, but lintian(1)74

will warn you about it when you try to build a source package.

Tip

We strongly recommend to use the 3.0 (quilt) (page 53) format for new packages.

You should only pick a different format if you really know what you are doing.

Native source packages

In most cases, a software project is packaged by external contributors called themaintainers
of the package. Because the packaging is often done by a 3rd-party (from the perspective
of the software project), the software to be packaged is often not designed to be packaged.
In these cases the source package has to do modifications to solve specific problems for its
target distribution. The source package can, in these cases, be considered as its own software
project, like a fork. Consequently, theUpstream releases and source package releases do not
always align.

Native packages almost always originate from software projects designed with Debian pack-
aging in mind and have no independent existence outside its target distribution. Conse-
quently native packages do not differentiate between Upstream releases and source pack-
age releases. Therefore, the version identifier of a native package does not have an Debian-
specific component.

For example:

74 https://manpages.ubuntu.com/manpages/noble/en/man1/lintian.1.html

52 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/lintian.1.html

• The debhelper package75 (provides tools for buildingDebian packages) is a native pack-
age fromDebian. Because it is designed with packaging in mind, the packaging specific
files are part of the original source code. The debhelper developers are alsomaintainers
of the Debian package. The Debian debhelper package gets merged into the Ubuntu
debhelper package and has therefore a ubuntu suffix in the version identifier.

• In contrast, the Ubuntu bash package76 (the default shell on Ubuntu) is NOT a native
package. The bash Software77 originates from the GNU project . The bash releases of
the GNU project project will get packaged by Debian maintainers and the Debian bash
package78 is merged into the Ubuntu bash package by Ubuntumaintainers. The Debian
and Ubuntu packages both are effectively their own separate software projects main-
tained by other people than the developers of the software that gets packaged. This is
the process how most software is packaged on Ubuntu.

Warning

Although native packages sound like the solution to use for your software project if you
want to distribute your software to Ubuntu/Debian, we strongly recommend against us-
ing native package formats for new packages. Native packages are known to cause long-
term maintenance problems.

Format: 3.0 (quilt)

A new-generation source package format that records modifications in a quilt(1)79 Patch
series within the debian/patches folder. The patches are organised as a stack, and you can
apply, unapply, and update them easily by traversing the stack (push/pop). These changes
are automatically applied during the extraction of the source package.

A source package in this format contains at least an original tarball (.orig.tar.ext where
ext can be gz, bz2, lzma or xz) and a debian tarball (.debian.tar.ext). It can also contain
additional original tarballs (.orig-component.tar.ext), where component can only contain al-
phanumeric (a-z, A-Z, 0-9) characters and hyphens (-). Optionally, each original tarball can
be accompanied by a detached signature from the upstream project (.orig.tar.ext.asc and
.orig-component.tar.ext.asc).

For example, take a look at the hello package:

pull-lp-source --download-only 'hello' '2.10-3'

Note

You need to install ubuntu-dev-tools to run the pull-lp-source:

sudo apt install ubuntu-dev-tools

75 https://launchpad.net/ubuntu/+source/debhelper
76 https://launchpad.net/ubuntu/+source/bash
77 https://www.gnu.org/software/bash/
78 https://tracker.debian.org/pkg/bash
79 https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

53 of 146

https://launchpad.net/ubuntu/+source/debhelper
https://launchpad.net/ubuntu/+source/bash
https://www.gnu.org/software/bash/
https://tracker.debian.org/pkg/bash
https://tracker.debian.org/pkg/bash
https://manpages.ubuntu.com/manpages/noble/en/man1/quilt.1.html

When you now run ls(1)80:

ls -1 hello_*

you should see the following files:

• hello_2.10-3.dsc: The Debian Source Control file of the source package.

• hello_2.10.orig.tar.gz: The tarball containing the original source code of the up-
stream project.

• hello_2.10.orig.tar.gz.asc: The detached upstream signature of hello_2.10.orig.
tar.gz.

• hello_2.10-3.debian.tar.xz: The tarball containing the content of the Debian direc-
tory.

Format: 3.0 (native)

A new-generation source package format extends the native package format defined in the
format 1.0 (page 55).

A source package in this format is a tarball (.tar.extwhere ext can be gz, bz2, lzma or xz).

For example, let’s take a look at the debhelper package:

pull-lp-source --download-only 'debhelper' '13.11.6ubuntu1'

When you now run ls(1)81:

ls -1 debhelper_*

you should see the following files:

• debhelper_13.11.6ubuntu1.dsc: TheDebian Source Controlfile of the source package.

• debhelper_13.11.6ubuntu1.tar.xz: The tarball containing the source code of the
project.

Other examples of native source packages are:

• ubuntu-dev-tools82

• ubuntu-release-upgrader83

• dh-cargo84

• ubiquity85

• subiquity86

80 https://manpages.ubuntu.com/manpages/noble/en/man1/ls.1.html
81 https://manpages.ubuntu.com/manpages/noble/en/man1/ls.1.html
82 https://launchpad.net/ubuntu/+source/ubuntu-dev-tools
83 https://launchpad.net/ubuntu/+source/ubuntu-release-upgrader
84 https://launchpad.net/ubuntu/+source/dh-cargo
85 https://launchpad.net/ubuntu/+source/ubiquity
86 https://launchpad.net/ubuntu/+source/subiquity

54 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/ls.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/ls.1.html
https://launchpad.net/ubuntu/+source/ubuntu-dev-tools
https://launchpad.net/ubuntu/+source/ubuntu-release-upgrader
https://launchpad.net/ubuntu/+source/dh-cargo
https://launchpad.net/ubuntu/+source/ubiquity
https://launchpad.net/ubuntu/+source/subiquity

Format: 1.0

The original source package format. Nowadays, this format is rarely used.

A native source package in this format consists of a single .tar.gz file containing the source.

A non-native source package in this format consists of a .orig.tar.gz file (containing the
Upstream source) associated with a .diff.gz file (the patch containing Debian packaging
modifications). Optionally, the original tarball can be accompanied by a detached Upstream
signature .orig.tar.gz.asc.

Note

This format does not specify a patch system, which makes it harder for maintainers to
track modifications. There were multiple approaches to how packages tracked patches.
Therefore, the source packages of this format often contained a debian/README.source
file explaining how to use the patch system.

3.0 formats improvements

Some of the improvements that apply to most 3.0 formats are:

• Support for additional compression formats: bzip2, lzma and xz.

• Support for multiple Upstream tarballs.

• Supports inclusion of binary files.

• Debian-specific changes are no longer stored in a single .diff.gz.

• The Upstream tarball does not need to be repacked to strip the Debian directory.

Other formats

The following formats are rarely used, experimental and/or historical. You should only
choose these if you know what you are doing.

• 3.0 (custom): Doesn’t represent an actual source package format but can be used to
create source packages with arbitrary files.

• 3.0 (git): An experimental format to package from a git repository.

• 3.0 (bzr): An experimental format to package from a Bazaar repository.

• 2.0: The first specification of a new-generation source package format. It was never
widely adopted and eventually replaced by 3.0 (quilt) (page 53).

.changes file

Although technically not part of a source package – every time a source package is built,
a .changes file will be created alongside it. The .changes file contains metadata from the
Source Control file and other information (e.g. the latest changelog entry) about the source
package. Archive tools and Archive Administrators use this data to process changes to source
packages and determine the appropriate action to upload the source package to the Ubuntu
Archive.

55 of 146

3.2.2. Binary packages
A binary package is a standardised format that the PackageManager (dpkg(1)87 or apt(8)88)
can understand to install and uninstall software on a targetmachine. This simplifies distribut-
ing software to a target machine and managing the software on that machine.

A Debian binary package uses the .deb file extension and contains a set of files that will be
installed on the host system and a set of files that control how the files will be installed or
uninstalled.

3.2.3. Resources
• Debian policy manual v4.6.2.0 – Chapter 3. Binary packages89

• Debian policy manual v4.6.2.0 – Chapter 4. Source packages90

• The manual page dpkg-source(1)91

• Debian wiki – 3.0 source package format92

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.3. Patches
Patches record modifications to source code. Patches can come in many forms, including but
not limited to:

• Upstream features or bug-fixes not present in the current release.

• Ubuntu specific changes, such as custom defaults and theming.

• CVE fixes and other security-related updates.

All changes to a source package in the 3.0 (quilt) format (see explanation (page 53)) to the
source files (all files inside the orig tarball / outside the debian/ directory) must be applied
in the form of a patch.

Changes to a source package in the 3.0 (native) format (see explanation (page 54)) get
applied directly and will not be further discussed in this article.

It is important to treat patches with care, and ensure the format and headers follow best
practices. This makes it easier to maintain a package long-term. In Ubuntu, we try to follow
the DEP 3 specification, which details a standard format for patch headers.

87 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
88 https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
89 https://www.debian.org/doc/debian-policy/ch-binary.html
90 https://www.debian.org/doc/debian-policy/ch-source.html
91 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
92 https://wiki.debian.org/Projects/DebSrc3.0

56 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html
https://www.debian.org/doc/debian-policy/ch-binary.html
https://www.debian.org/doc/debian-policy/ch-source.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
https://wiki.debian.org/Projects/DebSrc3.0

The source package stores the patches in the debian/patches/ directory. These patches get
applied from top to bottom in the order they are listed in debian/patches/series, excluding
empty lines and lines starting with #.

3.3.1. Sending patches upstream
Changes to the upstream source code which are not Ubuntu specific should be sent to the
upstream authors in whatever form they prefer. This allows the upstream authors to include
the patch in the upstream version of the package.

3.3.2. When you should (not) rewrite a patch header to follow
DEP 3
You should rewrite a patch header to follow DEP 3 if:

• You are introducing a new patch altogether.

• You are making substantive modifications to an existing patch.

• More information is known about the patch, and aDEP 3 headerwould contain updated
information.

You should not rewrite a patch header to follow DEP 3 if:

• You are preparing a non-micro-release exception SRU and changing the patch header is
not directly related to the bug being fixed.

• You intend on keeping only the modifications to the header as part of the Ubuntu delta
without making substantive changes to the diff contents, and have no plans to forward
it to Debian.

• The team claiming responsibility for this package in Ubuntu explicitly disagrees with
the usage of DEP 3 headers. (This should be brought up on the ubuntu-devel mailing
list.)

3.3.3. Resources
• Patch management with quilt (how-to) (page 32)

• DEP 3 – Patch file headers (reference) (page 99)

• Debian Policy Section 4.3. – Changes to the upstream sources93

• Debian Policy Section 4.13. – Embedded code copies94

• Debian Policy Section 4.17. – Vendor-specific patch series95

• Debian Policy Appendix 7. – Diversions - overriding a package’s version of a file (from
old Packaging Manual)96

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

93 https://www.debian.org/doc/debian-policy/ch-source.html#changes-to-the-upstream-sources
94 https://www.debian.org/doc/debian-policy/ch-source.html#embedded-code-copies
95 https://www.debian.org/doc/debian-policy/ch-source.html#vendor-specific-patch-series
96 https://www.debian.org/doc/debian-policy/ap-pkg-diversions.html

57 of 146

https://www.debian.org/doc/debian-policy/ch-source.html#changes-to-the-upstream-sources
https://www.debian.org/doc/debian-policy/ch-source.html#embedded-code-copies
https://www.debian.org/doc/debian-policy/ch-source.html#vendor-specific-patch-series
https://www.debian.org/doc/debian-policy/ap-pkg-diversions.html
https://www.debian.org/doc/debian-policy/ap-pkg-diversions.html

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.4. Ubuntu development process
Each release cycle follows the same general pattern, with the following major phases.
Ubuntu contributors are expected to follow this process closely to ensure that their work
is aligned with that of others. Because of the time-based release cycle, Ubuntu contributors
must coordinate well to produce an on-time release.

See also the article Ubuntu releases (page 64) for more details about the release cadence.

3.4.1. Beginning a new release
The Ubuntu infrastructure is prepared for a new development branch at the beginning of
each cycle. Thepackagebuild system is set up, the toolchain is organised, seeds are branched,
and many other pieces are made ready before development can properly begin. Once
these preparations are made, the new branch is officially announced on the ubuntu-devel-
announce mailing list97 and opened for uploads to the Ubuntu package archive (page 68).

Note

See the Ubuntu 24.04 LTS (Noble Numbat) archive opening announcement email98 as an
example.

3.4.2. Planning
Ubuntu contributors discuss the targeted features for each release cycle via the various chan-
nels (e.g., IRC, Matrix, Discourse, Launchpad). Some of these come from strategic priorities
for the distribution as a whole, and some are proposed by individual developers.

The broader open-source community gets together at the Ubuntu Summit (similar but dif-
ferent to the past Ubuntu Developer Summits) to share experiences and ideas and to inspire
future projects covering development as well as design, writing, and community leadership
with a wide range of technical skill levels.

3.4.3. Merging with upstream and feature development
The first phase of the release cycle is characterised by bringing new releases of upstream
components into Ubuntu, either directly or viaMerges and syncs from Debian (page 79). The
development of planned projects for the release often begins while merging is still under-
way, and the development accelerates once the package archive is reasonably consistent and
usable.

The automatic import of newpackage versions fromDebian ends at theDebian Import Freeze
(page 59).

3.4.4. Stabilisation and milestones (freezes)
Developers should increasingly exercise caution in making changes to Ubuntu to ensure a
stable state is reached in time for thefinal releasedate. Archive admins incrementally restrict
modifications to the Ubuntu package archive, effectively freezing the state of the Ubuntu
package archive. The milestones when these restrictions get enabled are called “freezes”.
During freezes, developers must request exceptions to approve changes. See how to request
a freeze exception (page 46). The release team usually posts the current Release Schedule as

97 https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel-announce
98 https://lists.ubuntu.com/archives/ubuntu-devel-announce/2023-October/001341.html

58 of 146

https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel-announce
https://lists.ubuntu.com/mailman/listinfo/ubuntu-devel-announce
https://lists.ubuntu.com/archives/ubuntu-devel-announce/2023-October/001341.html

a Discourse article under the “Release” topic99. It shows the typical order and length of the
various freezes.

Note

In the past, the Release Schedule was published in the UbuntuWiki. See, for example, the
release schedule of Ubuntu 20.04 LTS (Focal Fossa)100.

Testing weeks

During a release’s development phase, the release team organise testing weeks to focus
the Ubuntu community’s efforts on testing Ubuntu’s latest daily ISO images and its flavours.
These weeks are crucial for discovering bugs and getting early feedback about new features.

Note

The testing weeks replaced the older practice of alpha and betamilestones. For example,
Ubuntu 14.04 LTS (Trusty Tahr) had Alpha 1, Alpha 2, Beta 1, and Beta 2 milestones.

See the email101 that announced the process change.

Debian Import Freeze

Archive admins disable the automatic import of new packages and versions of existing pack-
ages from Debian. The import of a new package or version of an existing package from De-
bian has to be requested.

Note

The general development activity is still unrestricted until the Feature Freeze; however,
the Feature Freeze is often scheduled for the same day.

Feature Freeze (FF)

At this point, Ubuntu developers should stop introducing new features, packages, and
API/ABI changes, and instead concentrate on fixing bugs in the current release in develop-
ment.

User Interface Freeze (UIF)

Theuser interface should befinalised to allowdocumentationwriters and translators towork
on a consistent target that doesn’t render screenshots or documentation obsolete.

After the user interface freeze, the following things are not allowed to change without a
freeze exception:

• User interface of individual applications that are installed by default

• Appearance of the desktop

99 https://discourse.ubuntu.com/c/project/release
100 https://wiki.ubuntu.com/FocalFossa/ReleaseSchedule
101 https://lists.ubuntu.com/archives/ubuntu-release/2018-April/004434.html

59 of 146

https://discourse.ubuntu.com/c/project/release
https://wiki.ubuntu.com/FocalFossa/ReleaseSchedule
https://lists.ubuntu.com/archives/ubuntu-release/2018-April/004434.html

• Distribution-specific artwork

• All user-visible strings in the desktop and applications that are installed by default

Documentation String Freeze

Documentation strings should no longer be created or modified. This freeze ensures that
the documentation can be accurately translated.

Exceptions to this rulemaybe consideredbefore the release for significant andglaring errors
or exceptional circumstances.

Kernel Feature Freeze

The kernel feature development should end at this point, and the kernels can be considered
feature-complete for the release. From now on, only bugfix changes are expected.

Note

TheKernel Feature Freeze occurs after the Feature Freeze (FF) (page 59) because the Linux
Kernel is typically released upstream after the Feature Freeze. Additionally, the Kernel
Feature Freeze is deliberately scheduled so that the Beta images have a fully featured
kernel suitable for testing.

Hardware Enablement Freeze

All new hardware enablement tasks for devices targeting the given release should be fin-
ished, and all the respective packages should be in the Ubuntu package archive. The release
team no longer accepts changes in the Ubuntu package archive related to supporting new
image types or platforms. This freeze ensures that any new platforms are already available
for testing of the beta images and in the weeks leading to the Final Freeze (page 61).

Note

The Hardware Enablement Freeze is usually scheduled for the same day as the Beta
Freeze.

Beta Freeze

In preparation for the beta release, all uploads are queued and subject tomanual approval by
the release team. Changes to packages that affect beta release images (flavours included)
require the release team’s approval before uploading. Uploads for packages that do not af-
fect images are generally accepted as time permits.

Tip

You can use the seeded-in-ubuntu(1)102 tool, provided by the ubuntu-dev-tools package,
to list all the current daily images containing a specified package or to determinewhether
the specified package is part of the supported seed.

If the list output is empty, uploading it during a freeze should be safe.

60 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/seeded-in-ubuntu.1.html

The freeze allows Archive Admins to fix package inconsistencies or critical bugs quickly and in
an isolated manner. Once the beta release is shipped, the Beta Freeze restrictions no longer
apply.

Kernel Freeze

The Kernel Freeze is the final date for kernel updates because they require several lockstep
actions that must be folded into the image-building process.

Exceptional circumstances may justify exemptions to the freeze at the discretion of the re-
lease managers.

Non-language-pack translation deadline

Some translation data cannot currently be updated via the language pack mechanism. Be-
cause these items require more disruptive integration work, they are subject to an earlier
deadline to give time to developers to manually export translations from Launchpad and in-
tegrate them into the package.

This marks the date after which translations for such packages are not guaranteed to be in-
cluded in the final release. Depending on the package and its maintainers workflow, they
may be exported later.

Other packages can still be translated until the Language pack translation deadline (page 62).

Final Freeze

This freeze marks an extremely high-caution period until the Final Release (page 62). Only
bug fixes for release-critical, security-critical or otherwise exceptional circumstantial bugs
are included in the Final Release, which the release team and relevant section teams must
confirm.

Unseeded packages

Packages in universe (page 71) that aren’t seeded in any of the Ubuntu flavours remain in Fea-
ture Freeze (FF) (page 59) because they do not affect the release; however, when the Ubuntu
package archive is frozen, fixesmust bemanually reviewed and accepted by the release team
members.

When the Final Release is close (~1.5 days out), developers should consider uploading to the
proposed pocket (page 69), from which the release team cherry-picks into the release pocket
(page 69) if circumstances allow. All packages uploaded to the proposed pocket that do not
make it into the release pocket until the Final Release become candidates for Stable Release
Updates (page 62). Therefore, uploads to the proposed pocket during Final Freeze should
meet the requirements of Stable Release Updates if the upload is not accepted into the re-
lease pocket. In particular, the uploadmust reference at least one bug, which is used to track
the stable update.

Note

102 https://manpages.ubuntu.com/manpages/noble/en/man1/seeded-in-ubuntu.1.html

61 of 146

If you are sure that your upload will be accepted during Final Freeze, you can upload di-
rectly to the release pocket, but be aware that you have to re-upload after Final Release
if the upload gets rejected.

Release Candidate

The images produced during the week before the Final Release (page 62) are considered “re-
lease candidates”. In an ideal world, the first release candidate would end up being the Final
Release; however, we don’t live in a perfect world, and this week is used to get rid of the
last release-critical bugs and do as much testing as possible. Until the Final Release, changes
are only permitted at the release team’s discretion and will only be allowed for high-priority
bugs that might justify delaying the release.

Language pack translation deadline

Translations done up until this date will be included in the final release’s language packs.

3.4.5. Finalisation
As the final release approaches, the focus narrows to fixing “showstopper” bugs and thor-
oughly validating the installation images. Every image is tested to ensure that the instal-
lation methods work as advertised. Low-impact bugs and other issues are deprioritised to
focus developers on this effort.

This phase is vital, as severe bugs that affect the experience of booting or installing the im-
agesmust be fixed before the final release. In contrast, ordinary bugs affecting the installed
system can be fixed with Stable Release Updates.

3.4.6. Final Release
Once the release team declares the Release Candidate (page 62) ISO stable and names it the
“Final Release”, a representative of the team announces it on the ubuntu-announce mailing
list103.

Note

See, for example, the Ubuntu 24.04 LTS (Noble Numbat) release announcement104.

3.4.7. Stable Release Updates
After publication of an Ubuntu Stable Release, there may be a need to update it or fix bugs.
You can fix these newly-discovered bugs andmake updates through a special process known
as Stable Release Update (SRU).

TheSRUprocess ensures that any changesmade toa stable releaseare thoroughly vettedand
tested before being made available to users. This is because many users rely on the stability
of the stable release for their day-to-day operations, and any problem they experience with
it can be disruptive.

The following paragraphs intend to give you a brief introduction to the SRU process. See the
dedicated Ubuntu SRU Documentation105 for more details about this process.

103 https://lists.ubuntu.com/archives/ubuntu-announce/
104 https://lists.ubuntu.com/archives/ubuntu-announce/2024-April/000301.html
105 https://documentation.ubuntu.com/sru/en/latest/#home

62 of 146

https://lists.ubuntu.com/archives/ubuntu-announce/
https://lists.ubuntu.com/archives/ubuntu-announce/
https://lists.ubuntu.com/archives/ubuntu-announce/2024-April/000301.html
https://documentation.ubuntu.com/sru/en/latest/#home

When are SRUs necessary?

SRUs require great caution because they’re automatically recommended to a large number
of users. So, when you propose an update, there should be a strong rationale for it. Also, the
update should present a low risk of regressions (page 64).

You can propose an SRU in the following cases:

• To fix high-impact bugs, including those thatmay directly cause security vulnerabilities,
severe regressions from the previous release, or bugs that may directly cause loss of
user data.

• To adjust to changes in the environment, server protocols, orweb services. This ensures
that Ubuntu remains compatible with evolving technologies.

• For safe cases with low regression potential but high user experience improvement.

• To introduce new features in LTS releases, usually under strict conditions.

• To update commercial software in the Canonical partner archive.

• To fix Failed to build from Source issues.

• To fix autopkgtest failures, usually in conjunction with other high-priority fixes.

See also: SRU requirements106

Overview

A typical SRU is performed like this:

1. Ensure the bug is fixed in the current development release and all subsequent supported
releases to ensure consistency across different Ubuntu versions, especially preventing
regressions when users upgrade to newer releases.

2. Update the existing bug report detailing the Impact of the Bug, the Test Plan to verify
that the bug was fixed and highlight where problems could occur.

3. Get the package with the SRU patch into the upload queue.

4. The SRU team then reviews from the unapproved queue. When the upload is ready, the
SRU team accepts the upload into the proposed pocket.

5. Once the builds are ready, autopkgtest are triggered. Test the binaries in the Ubuntu
Archive and follow up in the bug report with your verification results.

6. The Ubuntu SRU Team evaluates the testing feedback and moves the package into up-
dates (page 69) after it passes a minimum ageing period of 7 days without regressions.

See how to perform an SRU107.

Verification

Once the SRU team accepts the SRU into the proposed pocket, the SRU has to be verified by
the reporter or affected users of the SRU bug in a software environment that closely resem-
bles the state after the SRU team copies the package to the updates pocket. Generally, this
is with a system that’s up to datewith the release, security, and updates pockets. It shouldn’t

106 https://documentation.ubuntu.com/sru/en/latest/explanation/requirements/
107 https://documentation.ubuntu.com/sru/en/latest/howto/standard/#howto-perform-standard-sru

63 of 146

https://documentation.ubuntu.com/sru/en/latest/explanation/requirements/
https://documentation.ubuntu.com/sru/en/latest/howto/standard/#howto-perform-standard-sru

include other packages from the proposed or backports pocket, except commonly-installed
packages built from the affected source package.

Read more about this process108.

SRU phasing

Once apackage is released to the updates pocket, the update is thenphased, so it is gradually
made available to expanding subsets of Ubuntu users.

Read more about phasing109.

Regressions

Regressions are unintended negative consequences that updates introduce. They appear as
new bugs or failures in previously well-functioning aspects of an Ubuntu release.

Read more about regressions110 and how to handle regressions111.

Updates removal

If a bug fixed by an update doesn’t get any testing or verification feedback for 90 days, an
automated “call for testing” comment is made on the bug report. If no testing occurs within
an additional 15 days, totalling 105 days without any testing, the Stable Release Managers
removes the package from proposed and close the bug task as Won't Fix.

Also, updates are removed from proposed if they introduce a non-trivial regression.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.5. Ubuntu releases
3.5.1. Release cadence
Ubuntu follows a strict time-based release cycle. Every sixmonths since 2004, Canonical pub-
lishes a new Ubuntu version and its set of packages are declared stable (production-quality).
Simultaneously, a new version begins development; it is given its own Code name, but also
referred to as the “Current Release in Development” or “Devel”.

108 https://documentation.ubuntu.com/sru/en/latest/howto/release/
109 https://documentation.ubuntu.com/sru/en/latest/explanation/standard-processes/#explanation-phasing
110 https://documentation.ubuntu.com/sru/en/latest/explanation/standard-processes/

#explanation-regressions
111 https://documentation.ubuntu.com/sru/en/latest/howto/regression/#howto-report-regression

64 of 146

https://documentation.ubuntu.com/sru/en/latest/howto/release/
https://documentation.ubuntu.com/sru/en/latest/explanation/standard-processes/#explanation-phasing
https://documentation.ubuntu.com/sru/en/latest/explanation/standard-processes/#explanation-regressions
https://documentation.ubuntu.com/sru/en/latest/howto/regression/#howto-report-regression

LTS releases

Since 2006, every fourth release, made every two years in April, receives Long Term Support
(LTS) (page 66) for large-scale deployments. This is the origin of the term “LTS” for stable,
maintained releases.

An estimated 95% of all Ubuntu installations are LTS releases.

Note

Because of the strict time-based six months release cycle, you will only see LTS releases
in even-numbered years (e.g. 18, 20, 22) in April (04). The only exception to this rule was
Ubuntu 6.06 LTS (Dapper Drake).

Point releases

To ensure that a fresh install of an LTS release (page 65) will work on newer hardware and
not require a big download of additional updates, Canonical publishes point releases that
include all the updates made so far.

The first point release of an LTS is published three months after the initial release and re-
peated every six months at least until the next LTS is published. In practice, Canonical may
publish even more point releases for an LTS series, depending on the popularity of that LTS
series.

For example, the Ubuntu 16.04.7 LTS (Xenial Xerus) point release was published more than
four years after the initial release of Ubuntu 16.04 LTS.

Interim releases

In the years between LTS releases, Canonical also produces interim releases, sometimes also
called “regular releases”.

Many developers use interim releases because they provide newer compilers or access to
newer Kernels and newer libraries, and they are often used inside rapid DevOps processes
like CI/CD pipelines where the lifespan of an artefact is likely to be shorter than the support
period of the interim release.

Why does Ubuntu use time-based releases?

Ubuntu releases represent an aggregation of the work of thousands of independent soft-
ware projects. The time-based release process provides users with the best balance of the
latest software, tight integration, and excellent overall quality.

3.5.2. Ubuntu version format
YY.MM[.POINT-RELEASE] [LTS]

Ubuntu version identifier as used for Ubuntu releases consist of four components, which are:

YY
The 2-digit year number of the initial release.

MM
The 2-digit month number of the initial release.

65 of 146

Note

Because of the strict time-based six months release cycle, you will usually only see
releases in April (04) and October (10).

POINT-RELEASE
The point release (page 65) number starts at 1 and increments with every additional
point release.

This component is omitted for the initial release, in which case zero is assumed.

LTS
Any Ubuntu release that receives long term support will be marked with LTS (see the
release lifespan (page 66) section for more information).

Any Ubuntu release that does not receive long term support omits this component.

Examples

Version Identi-
fier

Release Date Support End of StandardSupport End of Life

22.04 LTS 21 April 2022 Long
term

April 2027 April 2032

22.04.1 LTS 11 August 2022 Long
term

April 2027 April 2032

22.10 22 October 2022 Regular July 2023 July 2023
22.04.2 LTS 13 February

2023
Long
term

April 2027 April 2032

23.04 20 April 2022 Regular January 2024 January
2024

3.5.3. Release lifespan
Every Ubuntu Series receives the same production-grade support quality, but the length of
time for which an Ubuntu series receives support varies.

Regular support

Interim releases (page 65) are production-quality releases and are supported for ninemonths,
with sufficient time provided for users to update, but these releases do not receive the long-
term commitment of LTS releases.

Long Term Support (LTS)

LTS releases receive five years of standard security maintenance for all packages in theMain
Component . With an Ubuntu Pro subscription, you get access to Expanded Security Mainte-
nance (ESM), covering security fixes for packages in the Universe Component . ESM also ex-
tends the lifetime of an LTS series from five years to ten years.

66 of 146

3.5.4. Editions
Every Ubuntu release is provided as both a Server and Desktop edition.

UbuntuDesktop provides a graphicalUser Interface (GUI) for everyday computing tasks, mak-
ing it suitable for personal computers and laptops. Ubuntu Server , on the other hand, pro-
vides a text-based User Interface (TUI) instead of a GUI , optimised for server environments,
that allows machines on the server to be run headless, focusing on server-related services
and applications, making it ideal for hosting web services, databases, and other server func-
tions.

Additionally, each release of Ubuntu is available in minimal configurations, which have the
fewest possible packages installed: available in the installer for Ubuntu Server, UbuntuDesk-
top, and as separate cloud images.

Canonical publishes Ubuntu on all major public clouds, and the latest image for each LTS ver-
sion will always include any security update provided since the LTS release date, until two
weeks prior to the image creation date.

3.5.5. Ubuntu flavours
Ubuntu flavours are Distributions of the default Ubuntu releases, which choose their own
default applications and settings. Ubuntu flavours are owned and developed bymembers of
the Ubuntu community and backed by the full Ubuntu Archive for packages and updates.

Officially recognised flavours are:

• Edubuntu112

• Kubuntu113

• Lubuntu114

• Ubuntu Budgie115

• Ubuntu Cinnamon116

• Ubuntu Kylin117

• Ubuntu MATE118

• Ubuntu Studio119

• Ubuntu Unity120

• Xubuntu121

In addition to the officially recognised flavours, dozens of other Linux distributions take
Ubuntu as a base for their own distinctive ideas and approaches.

112 https://edubuntu.org/
113 https://kubuntu.org/
114 https://lubuntu.me/
115 https://ubuntubudgie.org/
116 https://ubuntucinnamon.org/
117 https://www.ubuntukylin.com/index-en.html
118 https://ubuntu-mate.org/
119 https://ubuntustudio.org/
120 https://ubuntuunity.org/
121 https://xubuntu.org/

67 of 146

https://edubuntu.org/
https://kubuntu.org/
https://lubuntu.me/
https://ubuntubudgie.org/
https://ubuntucinnamon.org/
https://www.ubuntukylin.com/index-en.html
https://ubuntu-mate.org/
https://ubuntustudio.org/
https://ubuntuunity.org/
https://xubuntu.org/

3.5.6. Resources
• The Ubuntu life cycle and release cadence122

• Ubuntu wiki – List of releases123

• Ubuntu flavours124

• Ubuntu wiki – Ubuntu flavours125

• Ubuntu wiki – time-based releases126

• Ubuntu wiki – point release process127

• Ubuntu wiki – end of life process128

• Ubuntu releases129

• Ask a bug supervisor <https://answers.launchpad.net/launchpad/+question/140509>

• contact theUbuntuSRUTeam<https://wiki.ubuntu.com/StableReleaseUpdates#Contacting_the_SRU_team>

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.6. Ubuntu package archive
Linux distributions like Ubuntu use repositories (page 69) to hold packages you can install on
target machines. Ubuntu has several repositories that anyone can access. The Ubuntu pack-
age archive hosts Debian binary packages (.deb files) and source packages (.dsc files). On
Ubuntu installations, the Ubuntu package archive is configured as the default source for the
APT package manager to download and install packages from. This Archive splits into many
layers, each with its own terminology. The different terminology is quite confusing at first,
but if we take a look, layer-by-layer, we’ll see not just what all the terms mean, but how they
all fit together.

Let’s have a quick overview with this diagram. The general flow is that the Archive splits into
Ubuntu series (page 69). Each series is split up into pockets (page 69), and then each pocket
contains four components (page 70). If we tried to show all of this on one diagram, it would
be quite extensive, so let’s take a look through a single path:

122 https://ubuntu.com/about/release-cycle
123 https://wiki.ubuntu.com/Releases
124 https://ubuntu.com/desktop/flavours
125 https://wiki.ubuntu.com/UbuntuFlavors
126 https://wiki.ubuntu.com/TimeBasedReleases
127 https://wiki.ubuntu.com/PointReleaseProcess
128 https://wiki.ubuntu.com/EndOfLifeProcess
129 https://releases.ubuntu.com/

68 of 146

https://ubuntu.com/about/release-cycle
https://wiki.ubuntu.com/Releases
https://ubuntu.com/desktop/flavours
https://wiki.ubuntu.com/UbuntuFlavors
https://wiki.ubuntu.com/TimeBasedReleases
https://wiki.ubuntu.com/PointReleaseProcess
https://wiki.ubuntu.com/EndOfLifeProcess
https://releases.ubuntu.com/

Note

Some of the following terminologies have only loose or informal definitions. Also, be
aware that the terminology surrounding the Ubuntu package archive gets mixed up in
day-to-day communications. This can be confusing, but the meaning is usually evident
from the surrounding context once you are familiar with the following terminologies.

3.6.1. Repositories
In the context of packagemanagement, repositories are servers containing sets of packages
that a package manager can download and install.

This term can refer to the Ubuntu package archive as a whole or just suites (page 70), pockets
(page 69), or components (page 70).

3.6.2. Series
A series refers to the packages that target a specific Ubuntu version. A series is usually re-
ferred to by its code name.

Examples of series are: mantic, lunar, jammy, focal, bionic, xenial, trusty.

Note

In practice, the terms “Ubuntu series” and “Ubuntu release” are often used synonymously
or are mistaken for each other. There is technically a difference; for example, an LTS ver-
sion usually has an initial release (e.g. 22.04 LTS) and multiple point releases (e.g. 22.04.1
LTS, 22.04.2 LTS), which are all part of the same series (e.g. jammy).

3.6.3. Pockets
Pockets are package sub-repositories within the Ubuntu package archive. Every Ubuntu se-
ries has the following pockets:

release

This pocket contains the packages that an Ubuntu series was initially releasedwith. After the
initial release of an Ubuntu series, the packages in this pocket are not updated (not even for
security-related fixes).

security

This pocket contains security-related updates to packages in the release (page 69) pocket.

updates

This pocket contains non-security-related updates to packages in the release (page 69)
pocket.

proposed

This pocket is a staging environment theUbuntu community canopt into, to verify the stability
of any updates before they get deployed to a broader range of consumers.

• Before the initial release of an Ubuntu series, this pocket contains non-security-related
updates to packages in the release (page 69) pocket before they get uploaded to the

69 of 146

release (page 69) pocket.

• After the initial release of an Ubuntu series, this pocket contains non-security-related
updates to packages in the release (page 69) pocket before they get uploaded to the
updates (page 69) pocket.

backports

This pocket contains packages the Ubuntu series was initially NOT released with.

The backports article (page 81) provides more information on backporting software.

Important

The backports pocket does not come with any security support guarantee. The Ubuntu
Security Teamdoes not update packages in the backports pocket. TheUbuntu community
is responsible for maintaining packages in backports with later patches for bug fixes and
security updates.

3.6.4. Suite
A combination of a series and a pocket. For example:

Suite Series Pocket
jammy jammy release (page 69)
jammy-security jammy security (page 69)
jammy-updates jammy updates (page 69)
jammy-proposed jammy proposed (page 69)
jammy-backports jammy backports (page 70)

You can see all active suites130 in the archive.

Note

The devel series always mirrors the series with the code name of the current release in
development .

3.6.5. Components
Components are logical subdivisions or namespaces of the packages in a suite. TheAPT pack-
age manager can subscribe to the individual components of a suite.

The packages of anUbuntu series are categorised according towhether they areOpen Source
Software or Closed Source Software, and whether or not they are part of the base packages
for a given series. On this basis they are sorted into the components “main”, “restricted”,
“universe”, or “multiverse”, as shown in the following table:

Open source software Closed source software
Ubuntu base packages main (page 71) restricted (page 71)
Community packages universe (page 71) multiverse (page 71)

130 http://archive.ubuntu.com/ubuntu/dists/

70 of 146

http://archive.ubuntu.com/ubuntu/dists/

Canonical maintains the base packages and provides security updates. See release lifespan
(page 66) for more information about the official support provided by Canonical.

For example, if you look into any of the Pockets (page 69) of the devel se-
ries (devel-release131, devel-updates132, devel-security133, devel-proposed134,
devel-backports135) you will see the four components (main, restricted, universe, mul-
tiverse) as directories.

main

This component contains open source software packages for a given series that are sup-
ported and maintained by Canonical.

restricted

This component contains closed source software packages for a given series that are sup-
ported and maintained by Canonical. Packages in this component are mostly proprietary
drivers for devices and similar.

universe

This component contains open source software packages for a given series that are sup-
ported and maintained by the Ubuntu community.

multiverse

This component contains packages (for a given series) of closed source software, or open
source software restricted by copyright or legal issues. These packages are maintained and
supported by the Ubuntu community, but because of the restrictions, patching bugs or up-
dates may not be possible.

3.6.6. Mirrors
Every day, hundreds of thousands of people want to download and install packages from the
Ubuntu package archive. To provide a good user experience, the content of http://archive.
ubuntu.com/ubuntu gets mirrored (replicated and kept in sync) by other servers to distribute
network traffic, reduce latency, and provide redundancy, which ensures high availability and
fault tolerance.

Here is a complete list of officially recognised Ubuntu package archive mirrors136.

Note

There are also mirrors for the Ubuntu ISO images (also called “CD images”, because ISO
images can be downloaded and burned to a CD to make installation disks.)

You can find a complete list of officially recognised Ubuntu CD mirrors137.

131 http://archive.ubuntu.com/ubuntu/dists/devel/
132 http://archive.ubuntu.com/ubuntu/dists/devel-updates/
133 http://archive.ubuntu.com/ubuntu/dists/devel-security/
134 http://archive.ubuntu.com/ubuntu/dists/devel-proposed/
135 http://archive.ubuntu.com/ubuntu/dists/devel-backports/
136 https://launchpad.net/ubuntu/+archivemirrors
137 https://launchpad.net/ubuntu/+cdmirrors

71 of 146

http://archive.ubuntu.com/ubuntu/dists/devel/
http://archive.ubuntu.com/ubuntu/dists/devel-updates/
http://archive.ubuntu.com/ubuntu/dists/devel-security/
http://archive.ubuntu.com/ubuntu/dists/devel-proposed/
http://archive.ubuntu.com/ubuntu/dists/devel-backports/
https://launchpad.net/ubuntu/+archivemirrors
https://launchpad.net/ubuntu/+cdmirrors

Country mirrors

Ubuntu package archive mirrors that provide a very reliable service in a country can request
to be the official country mirror for that country. Ubuntu installations are configured by
default to use the country mirror for their selected country.

Country mirrors are accessible via the domain name format:

<country-code>.archive.ubuntu.com

You can see which mirror is the country mirror by doing a simple DNS lookup. For example:

Finland (FI)

Tunisia (TN)

dig fi.archive.ubuntu.com +noall +answer

fi.archive.ubuntu.com. 332 IN CNAME mirrors.nic.funet.fi.
mirrors.nic.funet.fi. 332 IN A 193.166.3.5

Therefore, mirrors.nic.funet.fi is Finland’s country mirror.

Tunisia does not have any third-party mirrors in its country. Therefore the Tunisia country
mirror is just the primary Ubuntu package archive server (archive.ubuntu.com).

dig tn.archive.ubuntu.com +noall +answer

tn.archive.ubuntu.com. 60 IN A 185.125.190.36
tn.archive.ubuntu.com. 60 IN A 91.189.91.83
tn.archive.ubuntu.com. 60 IN A 91.189.91.82
tn.archive.ubuntu.com. 60 IN A 185.125.190.39
tn.archive.ubuntu.com. 60 IN A 91.189.91.81

which are just the archive.ubuntu.com IP addresses:

dig archive.ubuntu.com +noall +answer

archive.ubuntu.com. 1 IN A 185.125.190.39
archive.ubuntu.com. 1 IN A 185.125.190.36
archive.ubuntu.com. 1 IN A 91.189.91.83
archive.ubuntu.com. 1 IN A 91.189.91.81
archive.ubuntu.com. 1 IN A 91.189.91.82

3.6.7. Package uploads
Ubuntu encourages contributions from any person in the wider community. However, direct
uploading to the Ubuntu package archive is restricted. These general contributions need to
be reviewed and uploaded by a sponsor .

See our article on sponsorship (page 78) that explains this process in more detail.

3.6.8. Security update propagation
This section is a niche technical explanation. You can skip it if you don’t feel that this is cur-
rently relevant for you.

72 of 146

Because security updates contain fixes for Common Vulnerabilities and Exposures (CVE), it is
mission critical to distribute them as fast as possible to end users. Mirrors are a technical
burden in this case, because there is a delay between the synchronisation of amirror and the
primary Ubuntu package archive server.

In the worst case a bad actor gets informed about a CVE and can use it, before the update
reaches a target machine.

Therefore the APT package manager is configured by default (on Ubuntu) to also check for
updates from security.ubuntu.com. Security updates will get uploaded here first. If a mirror
does not provide the update yet a client will download it from security.ubuntu.com instead
from the mirror.

You can see this yourself if you lookwhat the sources.list(5)138 file contains on yourUbuntu
machine:

cat /etc/apt/sources.list

At the end of the file you will find something similar to this:

deb http://security.ubuntu.com/ubuntu SERIES-security main restricted
deb-src http://security.ubuntu.com/ubuntu SERIES-security main restricted
deb http://security.ubuntu.com/ubuntu SERIES-security universe
deb-src http://security.ubuntu.com/ubuntu SERIES-security universe
deb http://security.ubuntu.com/ubuntu SERIES-security multiverse
deb-src http://security.ubuntu.com/ubuntu SERIES-security multiverse

Because the sources.list(5)139 file is read from top to bottom, the APT package manager
will download updates from the mirror first and only download it from security.ubuntu.com
if the mirror has an older version, because the mirror has not synchronised with the primary
Ubuntu package archive server yet.

security.ubuntu.com points to the same servers as archive.ubuntu.com if you do a DNS
lookup. It is used in the sources.list(5)140 file for the security pocket to prevent a
user/script from accidentally changing it to a mirror.

3.6.9. Resources
• Ubuntu release cycle141

• Ubuntu blog – Ubuntu updates, releases and repositories explained142

• Ubuntu Server docs – package management143

• Ubuntu wiki – mirrors144

• Ubuntu help – repositories145

• Ubuntu help – repositories/Ubuntu146

138 https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
139 https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
140 https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
141 https://ubuntu.com/about/release-cycle
142 https://ubuntu.com/blog/ubuntu-updates-releases-and-repositories-explained
143 https://ubuntu.com/server/docs/package-management
144 https://wiki.ubuntu.com/Mirrors
145 https://help.ubuntu.com/community/Repositories
146 https://help.ubuntu.com/community/Repositories/Ubuntu

73 of 146

https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
https://manpages.ubuntu.com/manpages/noble/en/man5/sources.list.5.html
https://ubuntu.com/about/release-cycle
https://ubuntu.com/blog/ubuntu-updates-releases-and-repositories-explained
https://ubuntu.com/server/docs/package-management
https://wiki.ubuntu.com/Mirrors
https://help.ubuntu.com/community/Repositories
https://help.ubuntu.com/community/Repositories/Ubuntu

Landscape repositories

Landscape147 is a management and administration tool for Ubuntu. Landscape allows you to
mirrorAPT repositories like theUbuntu package archive. Although it is not directly related to
the Ubuntu package archive it can be educational to understand how APT repositories work
in general.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.7. Launchpad
Launchpad is a software collaboration and hosting platform similar to platforms like
GitHub148. Launchpad is also the platform where the Ubuntu project lives. This is one of
the major differences between the Ubuntu and Debian infrastructure.

Note

Although the Ubuntu project is probably the largest user base of Launchpad, Launchpad
can be used by anyone.

Launchpad features, among others, are:

• Bugs: Bug Tracking System

• Code: source code hosting with Git or Bazaar , version control and code review features

• Answers: community support site and knowledge base

• Translations: collaboration platform for localising software

• Blueprints: feature planning and specification tracking

• Ubuntu package building and hosting

• Team/Group management

While platforms like GitHub put users and groups at the top level, Launchpad puts projects
at the top level. If you take Ubuntu as an example, you can see that you can access it at
the top level: https://launchpad.net/ubuntu. Users and groups begin with a ~, for instance
https://launchpad.net/~ubuntu-foundations-team.

147 https://ubuntu.com/landscape
148 https://github.com/

74 of 146

https://ubuntu.com/landscape
https://github.com/

3.7.1. Why not use platforms like GitHub?
Although Launchpad’s UI and UX are a bit dated, Launchpad offers an unparalleled Ubuntu
package building and hosting infrastructure that no other platform offers. Even simple re-
quirements like building for architectures like PowerPC , s390x , or RISC-V can not be fulfilled
by GitHub or similar platforms.

3.7.2. Personal Package Archive (PPA)
Launchpad PPA repositories allow you to build installable Ubuntu packages for multiple ar-
chitectures and to host them in your own software repository .

Using a PPA is straightforward; you don’t need the approval of anyone, therefore users have
to enable it manually. See how to Install packages from a PPA (page 26).

This is useful when you want to test a change, or to show others that a change builds suc-
cessfully or is installable. Some people have special permission to trigger the autopkgtests
for packages in a PPA.

Tip

You can ask in the IRC channel #ubuntu-devel if someone can trigger autopkgtests in your
PPA if you don’t have the permission.

3.7.3. git-based workflow for the development of Ubuntu source
packages
Launchpad hosts a git-ubuntu importer service that maintains a view of the entire packaging
version history of Ubuntu source packages using git repositories with a common branching
and tagging scheme. The git-ubuntu CLI provides tooling and automation that understands
these repositories to make the development of Ubuntu itself easier.

You can see theweb-viewof these repositorieswhenyou clickon the “Code” tabof any source
package on Launchpad, for example, in the “hello” source package149 as shown in the follow-
ing screenshot:

149 https://code.launchpad.net/ubuntu/+source/hello

75 of 146

https://code.launchpad.net/ubuntu/+source/hello

3.7.4. Text markup
Launchpad has some markup features that you can use when you e.g. report bugs, write
comments, create merge proposals.

See the Launchpad text markup (page 102) reference for more details.

3.7.5. Getting help
If you need help with Launchpad you can choose any of the following methods:

IRC chat rooms

On the irc.libera.chat IRC server you will find the #launchpad channel, where you can ask
the Launchpad team and the Ubuntu community for help.

Mailing lists

If you prefer to ask for help via email, you can write to the launchpad-users150 mailing list
(launchpad-users@lists.launchpad.net).

Ask a question

As mentioned above, Launchpad has a community FAQ feature151 (called “Answers”) where
you can see other people’s questions or ask one yourself. Use can use the Answers feature
of the Launchpad project on Launchpad itself.

150 https://launchpad.net/~launchpad-users
151 https://answers.launchpad.net/launchpad

76 of 146

https://launchpad.net/~launchpad-users
https://answers.launchpad.net/launchpad

Report a bug

If you encounter any bug related to Launchpad, you can submit a bug report to the Bug Track-
ing System of the Launchpad project on Launchpad itself152.

3.7.6. Staging environment
Before new features are deployed to the production environment they get deployed to a
staging environment153 where the changes can get tested.

You can use the staging environment, to try out Launchpad features.

3.7.7. API
Launchpad has a web API that you can use to interact with its services. This makes it easy for
developer communities like Ubuntu’s to automate specific workflows.

You can find the reference documentation for the web API154 on Launchpad.

The Launchpad team even created an open source Python library, launchpadlib155.

3.7.8. Resources
• Launchpad home page156

• The Launchpad software project on Launchpad itself157

– Launchpad bug tracker158

– Launchpad questions and answers159

• Launchpad wiki160

• Launchpad development wiki161

• Launchpad blog162

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

152 https://bugs.launchpad.net/launchpad
153 https://qastaging.launchpad.net/
154 https://launchpad.net/+apidoc/
155 https://help.launchpad.net/API/launchpadlib
156 https://launchpad.net
157 https://launchpad.net/launchpad
158 https://bugs.launchpad.net/launchpad
159 https://answers.launchpad.net/launchpad
160 https://help.launchpad.net/
161 https://dev.launchpad.net/
162 https://blog.launchpad.net/

77 of 146

https://bugs.launchpad.net/launchpad
https://qastaging.launchpad.net/
https://qastaging.launchpad.net/
https://launchpad.net/+apidoc/
https://help.launchpad.net/API/launchpadlib
https://launchpad.net
https://launchpad.net/launchpad
https://bugs.launchpad.net/launchpad
https://answers.launchpad.net/launchpad
https://help.launchpad.net/
https://dev.launchpad.net/
https://blog.launchpad.net/

3.8. Sponsorship
Sponsorship is a process that allowsdeveloperswithout upload rights to submit their patches
or new packages for review. If approved, an authorised developer will upload the changes
on their behalf.

3.8.1. When can you request sponsorship?
Since upload rights are carefully managed to ensure system stability and security, new con-
tributors don’t have them. So if you don’t have upload rights, you can request sponsorship in
the following situations:

• Making changes to existing packages or incremental updates.

• Submitting security updates or bug fixes.

• Introducing new packages to Ubuntu.

3.8.2. Requesting sponsorship
To request sponsorship, follow these steps:

1. File an Ubuntu bug in Launchpad163 or follow up on an existing one.

2. Add the necessary files, such as patches or .diff.gz files, according to the package’s
requirements. If the change is a patch, follow the patch tagging guidelines. For security
updates, follow the security update packaging guidelines described in Packaging164.

3. Link your changes to the bug. See Seeking Sponsorship165.

4. Subscribe ubuntu-sponsors or ubuntu-security-sponsors to the bug.

3.8.3. Sponsoring a patch
Members of theUbuntu Sponsors andUbuntu Security Sponsors teams have the right to spon-
sor patches or new packages. If you are interested in sponsoring, you can apply to join these
teams.

3.8.4. Responding to feedback from sponsors
If a sponsor reviews your changes and requests further modifications, make the modifica-
tions to the branch you were working on, then commit them by running:

$ bzr commit

Now, push your modifications to Launchpad . Since bzr remembers the previous push loca-
tion, you can run:

$ bzr push

After pushing yourmodifications, reply to the sponsor’s request explaining themodifications
youmade and request a re-review. You can also respond directly on themerge proposal page
in Launchpad.

3.8.5. Resources
• Sponsorship Process166

• Seeking Sponsorship167

163 https://bugs.launchpad.net/ubuntu/+filebug
164 https://wiki.ubuntu.com/SecurityTeam/UpdatePreparation#Packaging
165 https://wiki.ubuntu.com/DistributedDevelopment/Documentation/SeekingSponsorship
166 https://wiki.ubuntu.com/SponsorshipProcess
167 https://wiki.ubuntu.com/DistributedDevelopment/Documentation/SeekingSponsorship

78 of 146

https://bugs.launchpad.net/ubuntu/+filebug
https://wiki.ubuntu.com/SecurityTeam/UpdatePreparation#Packaging
https://wiki.ubuntu.com/DistributedDevelopment/Documentation/SeekingSponsorship
https://wiki.ubuntu.com/SponsorshipProcess
https://wiki.ubuntu.com/DistributedDevelopment/Documentation/SeekingSponsorship

• Update Preparation168

• Seeking Review and Sponsorship169

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.9. Proposed migrations
Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.10. Importing changes from Debian
(merges & syncs)
This article explains how and why changes from Debian are imported into Ubuntu.

3.10.1. How does Ubuntu import changes from Debian?
Because Ubuntu is derived from Debian and uses the same package management system
(APT), most changes made to Debian can also be applied to Ubuntu.

Syncs and merges are the two processes through which Ubuntu developers integrate up-
dates and improvements from Debian into the Ubuntu package archive (page 68).

Sync

Beginning with the archive opening for a new Ubuntu release until the Debian Import Freeze
(page 59), new packages and packageswith higher version identifiers than the corresponding
Ubuntu packages are automatically copied from Debian unstable (also known as Code name
“Sid”) into the Ubuntu package archive if the corresponding Ubuntu packages do not carry
Ubuntu Delta. This process is called “synchronisation with Debian”, or “sync” for short.

On request (via a Launchpad bug-ticket),Archive Admins can sync a package fromDebian even
if the Ubuntu package carries Ubuntu Delta. In this case, the Ubuntu Delta will be dropped. A

168 https://wiki.ubuntu.com/SecurityTeam/UpdatePreparation#Packaging
169 https://ubuntu-packaging-guide.readthedocs.io/en/latest/ubuntu-packaging-guide/udd-sponsorship.html

79 of 146

https://wiki.ubuntu.com/SecurityTeam/UpdatePreparation#Packaging
https://ubuntu-packaging-guide.readthedocs.io/en/latest/ubuntu-packaging-guide/udd-sponsorship.html

good example is when Ubuntu-specific changes have been merged into the Debian package
or Upstream project and are no longer needed.

Note

The Feature Freeze (FF) (page 59) is often scheduled for the same day as theDebian Import
Freeze (page 59).

After the Debian Import Freeze and before the Final Release (page 62), you must also
request the respective freeze exception.

After the Final Release, you must follow the Stable Release Updates (page 62) process.
For additional details about the freezes, see the Ubuntu development process (page 58)
article.

Merges

When importing a newer Debian package into Ubuntu, amergemust be performed if the cor-
responding Ubuntu package carries Ubuntu Delta that needs to be partially or fully applied
to the Debian package.

The UbuntuMerge-o-Matic (MoM) automatically performsmerges and publishes the reports
on this page170. See the lists of outstanding merges for:

• main171

• universe172

• restricted173

• multiverse174

To complete a merge, interaction and supervision by Ubuntu maintainers are required. See
the tutorial (page 10) and how-to (page 46) for details on performing a merge.

See the section Components (page 70) in the article that explains theUbuntu package archive
for an explanation of main, universe, restricted and multiverse.

3.10.2. Why does Ubuntu import changes from Debian?
Ubuntu incorporates changes from Debian through merging and syncing to leverage the ex-
tensive work and improvements made by the Debian community. Debian provides a stable
foundation and a vast repository of packages. By integrating changes from Debian, Ubuntu
can focus on refining the user experience. At the same time, the consistency betweenUbuntu
and Debian allows for sharing resources (e.g., testing and bug fixing) and contributing back
to the open-source ecosystem, ultimately benefiting both distributions and their users.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

170 https://merges.ubuntu.com/
171 https://merges.ubuntu.com/main.html
172 https://merges.ubuntu.com/universe.html
173 https://merges.ubuntu.com/restricted.html
174 https://merges.ubuntu.com/multiverse.html

80 of 146

https://merges.ubuntu.com/
https://merges.ubuntu.com/main.html
https://merges.ubuntu.com/universe.html
https://merges.ubuntu.com/restricted.html
https://merges.ubuntu.com/multiverse.html

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.11. Transitions
Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.12. Backports
Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

3.13. Main Inclusion Review (MIR)
Important

Do not confuse the abbreviationMIR with the display server175 Mir.

Packages in Main and Restricted are officially maintained, supported and recommended by
the Ubuntu project. Canonical’s support services applies to these packages, which include
security updates and certain SLA guarantees when bugs are reported and technical support
is requested.

Therefore, special consideration is necessary before adding new packages to Main or Re-
stricted. The UbuntuMIR Team reviews packages for promotion:

• from Universe toMain, or

• fromMultiverse to Restricted .
175 https://mir-server.io/

81 of 146

https://mir-server.io/

This review process is calledMain Inclusion Review (MIR).

3.13.1. Submit a package for Main Inclusion Review
The Main Inclusion Review documentation176 by the MIR team provides instructions on how
to apply for Main Inclusion Review for a package. The documentation even contains details
of how the application gets reviewed by the MIR team.

Note

The guidelines and review process is constantly evolving. Therefore you should re-read
the MIR documentation even if you have submitted a package for Main Inclusion Review
in the past.

The MIR documentation is also a living document. External contributions, suggestions,
discussions or questions about the process are always welcome.

3.13.2. MIR team weekly meeting
The MIR team holds weekly meetings every Tuesday at 16:30 CET on the IRC server irc.
libera.chat in the #ubuntu-meeting channel. You can follow these instructions177 on how to
connect to irc.libera.chat.

The purpose of the meeting is:

• to distribute the workload fairly between the members of the MIR team

• to provide a timely response to reporters of MIR applications

• detection and discussion of any current or complex cases

You should attend these meetings if you submit an MIR request until it is approved or re-
jected.

Usually, the amount of MIR requests increases during the six-month development period of
a new Ubuntu release. Especially right before the various feature freezes (see Ubuntu devel-
opment process (page 58)), Ubuntu developers submit MIR requests they have been working
on before they have to submit an exception request. As a result, the meetings tend to be
quieter, and response times to MIR requests are, on average, faster after the release of a
new Ubuntu version.

3.13.3. Resources
• Main Inclusion Review documentation178 by the MIR team

– MIR process overview179

– MIR application template180

– Helper tools181

– Bug lists182

176 https://github.com/canonical/ubuntu-mir
177 https://libera.chat/guides/connect
178 https://github.com/canonical/ubuntu-mir
179 https://github.com/canonical/ubuntu-mir#process-states
180 https://github.com/canonical/ubuntu-mir#main-inclusion-requirements
181 https://github.com/canonical/ubuntu-mir#tools
182 https://github.com/canonical/ubuntu-mir#bug-lists

82 of 146

https://github.com/canonical/ubuntu-mir
https://libera.chat/guides/connect
https://github.com/canonical/ubuntu-mir
https://github.com/canonical/ubuntu-mir#process-states
https://github.com/canonical/ubuntu-mir#main-inclusion-requirements
https://github.com/canonical/ubuntu-mir#tools
https://github.com/canonical/ubuntu-mir#bug-lists

– Pull requests183

– Issues184

• MIR team on Launchpad : ~ubuntu-mir185

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

183 https://github.com/canonical/ubuntu-mir/pulls
184 https://github.com/canonical/ubuntu-mir/issues
185 https://launchpad.net/~ubuntu-mir

83 of 146

https://github.com/canonical/ubuntu-mir/pulls
https://github.com/canonical/ubuntu-mir/issues
https://launchpad.net/~ubuntu-mir

4. Reference
Our reference section contains support information related to packaging in Ubuntu. This
includes details on the network requirements, API definitions, support matrices, and so on.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.1. Basic overview of the debian/ directory
This article will briefly explain the different files important to the packaging of Ubuntu pack-
ages which are contained in the debian/ directory. The most important of them are debian/
changelog, debian/control, debian/copyright, and debian/rules. These are required for all
packages. A number of additional files in the debian/ directory may be used in order to cus-
tomise and configure the behaviour of the package. Some of these files are discussed in this
article, but this is not meant to be a complete list.

4.1.1. The changelog file
This file is a listing of the changes made in each version. It has a specific format that gives
the package name, version, distribution changes, and whomade the changes at a given time.
The following is a template debian/changelog:

package (version) distribution; urgency=urgency
[optional blank line(s), stripped]
* change details

- more change details
* even more change details

[optional blank line(s), stripped]
-- maintainer name <email address>[two spaces] date

package and version are the source package name and version number, respectively.

The distribution field lists the distribution(s) in which this release should be installed.

urgency describes how important an upgrade is. Its value can be one of the following: low,
medium, high, emergency, or critical.

The change details consist of lines indented by at least two spaces, but these conventionally
are a list. Major bullet points use an asterisk “*”, while minor bullet points are indicated by a
dash “-“.

The changelog entry ends with a line indented by one space that contains the name, email
of the maintainer, and date of change. The maintainer here is the one responsible for the

84 of 146

release, but it need not be the package maintainer.

Note

If you have a signing key (see Getting set up (page 3)), then make sure to use the same
name and email address in debian/changelog entry as you have in your key.

Important

The date should be in RFC 5322186 format, which can be obtained by using the command
date -R. For convenience, the command dch may be used to edit the changelog. It will
update the date automatically. For further information, see dch(1)187.

If you are packaging from scratch, dch --create (dch is in the devscripts package) will create
a standard debian/changelog for you.

Here is a sample debian/changelog file for hello:

hello (2.8-0ubuntu1) trusty; urgency=low

* New upstream release with lots of bug fixes and feature improvements.

-- Jane Doe <packager@example.com> Thu, 21 Oct 2013 11:12:00 -0400

Notice that the version has a -0ubuntu1 appended to it, this is the distribution revision, used
so that the package can be updated (to fix bugs for example) with new uploads within the
same source release version.

Ubuntu and Debian have slightly different package versioning schemes to avoid conflicting
packages with the same source version. If a Debian package has been changed in Ubuntu,
it has ubuntuX (where X is the Ubuntu revision number) appended to the end of the Debian
version. So if the Debian hello 2.6-1 package was changed by Ubuntu, the version string
would be 2.6-1ubuntu1. If a package for the application does not exist in Debian, then the
Debian revision is 0 (e.g. 2.6-0ubuntu1).

For further information, see the changelog section (Section 4.4)188 of the Debian PolicyMan-
ual.

4.1.2. The control file
The debian/control file contains the information that the package manager (such as APT)
uses, build-time dependencies, maintainer information, and much more. The file consists of
one or more stanzas of fields, with each stanza separated by empty lines. The fields consist
of key-value pairs separated by a colon “:”; conventionally, a single space follows the colon.

For the Ubuntu hello package, the debian/control file looks something like this:

Source: hello
Section: devel

(continues on next page)

186 https://datatracker.ietf.org/doc/html/rfc5322.html
187 https://manpages.ubuntu.com/manpages/noble/en/man1/dch.1.html
188 https://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog

85 of 146

https://datatracker.ietf.org/doc/html/rfc5322.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dch.1.html
https://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog

(continued from previous page)

Priority: optional
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
XSBC-Original-Maintainer: Jane Doe <packager@example.com>
Standards-Version: 4.6.2
Build-Depends: debhelper-compat (= 13), help2man, texinfo
Homepage: https://www.gnu.org/software/hello/

Package: hello
Architecture: any
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: The classic greeting, and a good example
The GNU hello program produces a familiar, friendly greeting. It
allows non-programmers to use a classic computer science tool which
would otherwise be unavailable to them. Seriously, though: this is
an example of how to do a Debian package. It is the Debian version of
the GNU Project's `hello world' program (which is itself an example
for the GNU Project).

The first stanza describes the source package. It contains the following fields:

• Source (required): The name of the source package.

• Maintainer (required): The name and email of the package maintainer.

Note

In Ubuntu, we set the Maintainer field to a general address because anyone can change
any package (this differs fromDebian where changing packages is usually restricted to an
individual or a team). Packages inUbuntu should generally have the Maintainerfield set to
Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>. If the Maintainer field is
modified, theold value shouldbe saved in the XSBC-Original-Maintainerfield. This canbe
done automatically with the update-maintainer script available in the ubuntu-dev-tools
package. For further information, see the Debian Maintainer Field spec189 on the Ubuntu
wiki.

• Uploaders: The list of names and email addresses of co-maintainers.

• Section (recommended): The application area into which the package has been classi-
fied.

• Priority (recommended): How important the package is.

• Build-Dependsfields: Lists the packages required to build the package from source. For
a full list of the

• Standards-Version (required): The version of Debian Policy that the package complies
with.

• Homepage: The upstream home page.

• Version Control System fields:

– VCS-Browser: Web interface to browse the repository.

189 https://wiki.ubuntu.com/DebianMaintainerField

86 of 146

https://wiki.ubuntu.com/DebianMaintainerField

– VCS-<type>: The repository location. See Version Control System fields (Section
5.6.26)190 of the Debian Policy Manual for more details.

• Testsuite: A comma-separated list of values allowing test execution environments to
discover packages which provide tests.

• Rules-Requires-Root: Defines whether the source package requires root access during
selected targets.

Each additional stanza describes a binary package to be built. These stanzas contain the fol-
lowing fields:

• Package (required): The name of the binary package.

• Architecture (required): The architectures supported.

• Section (recommended): The application area into which the package has been classi-
fied.

• Priority (recommended): How important the package is.

• Essential: Optional boolean field to prevent the package manager from removing the
package when set to yes. When this field is absent, the default behaviour is no.

• Depends fields:

• Description (required): Contains a description of the binary package. This field consists
of a synopsis and a long description.

• Homepage: The upstream home page.

• Built-Using: This field is used in cases where the package incorporates parts of other
packages and relies on specific versions.

• Package-Type: Indicates the type of the package, for example: deb or udeb.

For further information, see the control file section (Chapter 5)191 of the Debian Policy Man-
ual.

4.1.3. The copyright file
This file gives the copyright information for both the upstream source and the packaging.
Ubuntu andDebianPolicy (Section 12.5)192 require that each package installs a verbatim copy
of its copyright and license information to /usr/share/doc/$(package_name)/copyright.

Generally, copyright information is found in the COPYINGfile in theprogram’s sourcedirectory.
This file should include such information as the names of the author and the packager, the
URL fromwhich the source came, a copyright line with the year and copyright holder, and the
text of the copyright itself. An example template would be:

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: Hello
Source: ftp://ftp.example.com/pub/games

Files: *
Copyright: Copyright 1998 John Doe <jdoe@example.com>
License: GPL-2+

(continues on next page)

190 https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-vcs-fields
191 https://www.debian.org/doc/debian-policy/ch-controlfields.html
192 https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile

87 of 146

https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-vcs-fields
https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-vcs-fields
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile

(continued from previous page)

Files: debian/*
Copyright: Copyright 1998 Jane Doe <packager@example.com>
License: GPL-2+

License: GPL-2+
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
.
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.
.
You should have received a copy of the GNU General Public
License along with this package; if not, write to the Free
Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA
.
On Debian systems, the full text of the GNU General Public
License version 2 can be found in the file
`/usr/share/common-licenses/GPL-2'.

This example follows theMachine-readable debian/copyright193 format. You are encouraged
to use this format as well.

4.1.4. The rules file
The debian/rules file does all the work for creating our package. It is a Makefile with targets
to compile and install the application, then create the .deb file from the installed files. It also
has a target to clean up all the build files so you end up with just a source package again.

More specifically, the debian/rules file has the following targets:

• build (required)

This target configures and compiles the package.

• build-arch (required), build-indep (required)

The build-arch target configures and compiles architecture-dependent binary pack-
ages (distinguished by not having the all value in the Architecture field).

The build-indep target configures and compiles architecture-independent binary pack-
ages (distinguished by the all value for the Architecture field).

• binary (required), binary-arch (required), binary-indep (required)

The binary target is all that the user needs to build the binary package(s) from
the source package. It is typically an empty target that depends on its two parts,

193 https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

88 of 146

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

binary-arch and binary-indep.

The binary-arch target builds the binary packages which are architecture-dependent.

The binary-indep target builds the binary packages which are architecture-
independent.

• clean (required)

This target undoes the effects of the build and binary targets, but it does not affect
output files that a binary target creates in the parent directory.

• patch (optional)

This target prepares the source for editing. For example, it may unpack additional up-
stream archives, apply patches, etc.

Here is a simplified version of the debian/rules file created by dh_make (which can be found
in the dh-make package):

#!/usr/bin/make -f
-*- makefile -*-

Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

%:
dh $@

Let us go through this file in some detail. What this does is pass every build target that
debian/rules is called with as an argument to /usr/bin/dh, which itself will call the neces-
sary dh_* commands.

dh runs a sequence of debhelper commands. The supported sequences correspond to the
targets of a debian/rules file: build, clean, install, binary-arch, binary-indep, and binary.
In order to see what commands are run in each target, run:

dh binary-arch --no-act

Commands in the binary-indep sequence are passed the “-i” option to ensure they only work
on binary independent packages, and commands in the binary-arch sequences are passed the
“-a” option to ensure they only work on architecture dependent packages.

Each debhelper command will record when it’s successfully run in debian/package.
debhelper.log (which dh_clean deletes). So dh can tell which commands have already been
run, for which packages, and skip running those commands again.

Each time dh is run, it examines the log, and finds the last logged command that is in the
specified sequence. It then continues with the next command in the sequence. The --until,
--before, --after, and --remaining options can override this behaviour.

If debian/rules contains a target with a name like override_dh_command, then when it gets to
that command in the sequence, dhwill run that target from the rules file, rather than running
the actual command. The override target can then run the commandwith additional options,
or run entirely different commands instead.

89 of 146

Note

To use the override feature, you should Build-Depend on debhelper version 7.0.50 or
above.

Have a look at /usr/share/doc/debhelper/examples/ and dh(1)194 for more examples. Also
see the rules section (Section 4.9)195 of the Debian Policy Manual.

4.1.5. Additional files
The install file

The install file is used by dh_install to install files into the binary package. It has two stan-
dard use cases:

• To install files into your package that are not handled by the upstream build system

• Splitting a single large source package into multiple binary packages.

In the first case, the install file should have one line per file installed, specifying both the
file and the installation directory. For example, the following install file would install the
script foo in the source package’s root directory to usr/bin and a desktop file in the debian
directory to usr/share/applications:

foo usr/bin
debian/bar.desktop usr/share/applications

When a source package is producing multiple binary packages dh will install the files into
debian/tmp rather than directly into debian/<package>. Files installed into debian/tmp can
then be moved into separate binary packages using multiple $package_name.install files.
This is oftendone to split large amounts of architecture independent data out of architecture
dependent packages and into Architecture: all packages. In this case, only the name of
the files (or directories) to be installed are needed without the installation directory. For
example, foo.install containing only the architecture dependent files might look like:

usr/bin/
usr/lib/foo/*.so

While the foo-common.install containing only the architecture independent file might look
like:

/usr/share/doc/
/usr/share/icons/
/usr/share/foo/
/usr/share/locale/

This would create two binary packages, foo and foo-common. Both would require their own
stanza in debian/control.

See dh_install(1)196 and the install file section (Section 5.11)197 of the Debian New Main-
tainers’ Guide for additional details.
194 https://manpages.ubuntu.com/manpages/noble/en/man1/dh.1.html
195 https://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
196 https://manpages.ubuntu.com/manpages/noble/en/man1/dh_install.1.html
197 https://www.debian.org/doc/manuals/maint-guide/dother.en.html#install

90 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/dh.1.html
https://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
https://manpages.ubuntu.com/manpages/noble/en/man1/dh_install.1.html
https://www.debian.org/doc/manuals/maint-guide/dother.en.html#install

The watch file

The debian/watch file allows us to check automatically for new upstream versions using the
tool uscan found in the devscriptspackage. Thefirst line of thewatchfilemust be the format
version (4, at the time of thiswriting), while the following lines contain anyURLs to parse. For
example:

version=4
http://ftp.gnu.org/gnu/hello/hello-(.*).tar.gz

Note

If your tarballs live on Launchpad , the debian/watch file is a little more complicated (see
Question 21146198 and Bug 231797199 for why this is). In that case, use something like:

version=4
https://launchpad.net/flufl.enum/+download http://launchpad.net/flufl.enum/.*/
flufl.enum-(.+).tar.gz

Running uscan in the root source directory will now compare the upstream version number in
the debian/changelog with the latest upstream version. If a new upstream version is found,
it will be automatically downloaded. For example:

$ uscan
hello: Newer version (2.7) available on remote site:

http://ftp.gnu.org/gnu/hello/hello-2.7.tar.gz
(local version is 2.6)

hello: Successfully downloaded updated package hello-2.7.tar.gz
and symlinked hello_2.7.orig.tar.gz to it

For further information, see uscan(1)200 and the watch file section (Section 4.11)201 of the
Debian Policy Manual.

The source/format file

This file indicates the format of the source package. It should contain a single line indicating
the desired format:

• 3.0 (native) for Debian native packages (no upstream version)

• 3.0 (quilt) for packages with a separate upstream tarball

• 1.0 for packages wishing to explicitly declare the default format

Note

The debian/source/formatfile should always exist. If the file can not be found, the format
1.0 is assumed for backwards compatibility, but lintian(1)202will warn you about itwhen

198 https://answers.launchpad.net/launchpad/+question/21146
199 https://launchpad.net/launchpad/+bug/231797
200 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
201 https://www.debian.org/doc/debian-policy/ch-source.html#s-debianwatch

91 of 146

https://answers.launchpad.net/launchpad/+question/21146
https://launchpad.net/launchpad/+bug/231797
https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://www.debian.org/doc/debian-policy/ch-source.html#s-debianwatch
https://manpages.ubuntu.com/manpages/noble/en/man1/lintian.1.html

you try to build a source package.

You are strongly recommended to use the newer 3.0 source format. It provides a number of
new features:

• Support for additional compression formats: bzip2, lzma and xz

• Support for multiple upstream tarballs

• Not necessary to repack the upstream tarball to strip the debian directory

• Debian-specific changes are no longer stored in a single .diff.gz but in multiple
patches compatible with quilt under debian/patches/. The patches to be applied au-
tomatically are listed in the debian/patches/series file.

The Debian DebSrc3.0203 page summarises additional information concerning the switch to
the 3.0 source package formats.

See dpkg-source(1)204 and the source/format section (Section 5.21)205 of the Debian New
Maintainers’ Guide for additional details.

4.1.6. Additional Resources
In addition to the links to the Debian Policy Manual in each section above, the Debian New
Maintainers’ Guide has more detailed descriptions of each file. Chapter 4, “Required files
under the debian directory”206 further discusses the control, changelog, copyright and rules
files. Chapter 5, “Other files under the debian directory”207 discusses additional files that
may be used.

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.2. Debian policy
The Debian policy defines the requirements and guidelines for packages in the Debian distri-
bution. It governs how packages should behave, how they interact with each other, and how
they fit into the system as a whole.

The policy specifies:

• the structure and contents of the Debian archive

• mandatory technical requirements for inclusion in the distribution

202 https://manpages.ubuntu.com/manpages/noble/en/man1/lintian.1.html
203 https://wiki.debian.org/Projects/DebSrc3.0
204 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
205 https://www.debian.org/doc/manuals/maint-guide/dother.en.html#sourcef
206 https://www.debian.org/doc/manuals/maint-guide/dreq.en.html
207 https://www.debian.org/doc/manuals/maint-guide/dother.en.html

92 of 146

https://wiki.debian.org/Projects/DebSrc3.0
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
https://www.debian.org/doc/manuals/maint-guide/dother.en.html#sourcef
https://www.debian.org/doc/manuals/maint-guide/dreq.en.html
https://www.debian.org/doc/manuals/maint-guide/dreq.en.html
https://www.debian.org/doc/manuals/maint-guide/dother.en.html

• package formatting and control files

• filesystem layout

• operating system design principles

• maintainer scripts

• inter-package relationships

• shared library handling

See the Debian Policy Manual208 for the latest version of the Debian policy.

4.2.1. Policy conformance
It’s recommended but notmandatory that every source package should conform to the latest
version of the Debian policy available at the time of the package’s last update.

The Standards-Version field in the debian/control file of the source package must be filled
out to indicate the versionof theDebianpolicy that thepackage complieswith. Also, package
maintainers must review policy changes before updating this field.

debian/control file

The debian/control file defines key metadata for source packages and binary packages. It
resides in the root of the source package directory and is required for all source packages.

This file consists of stanzas, which are sections of fields separated by empty lines. The first
stanza defines the source package. Each following stanza describes a binary package built
from that source package.

Here are the required fields in the first stanza of the debian/control file of the source pack-
age:

Source
The name of the source package, which must be unique within the Debian archive.

Maintainer
Name and email of the primary maintainer. This field is crucial for contacting the main-
tainer regarding issues, updates, or questions related to the package.

Standards-Version
The version of the Standard the package complies with.

Recommended fields in the first stanza of the debian/control file include Section and Pri-
ority.

For more information on debian/control files and their fields, see Control files and their
fields209.

Standards-Version field

The Standards-Version field in the debian/control file indicates which version of the Debian
policy the package has been reviewed against. The field must appear in the first stanza of
the debian/control file.

The value of the field, which is the Debian policy version number, has four components:
208 https://www.debian.org/doc/debian-policy/index.html
209 https://www.debian.org/doc/debian-policy/ch-controlfields.html

93 of 146

https://www.debian.org/doc/debian-policy/index.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html

Standards-Version: <major>.<minor>.<patch>.<subpatch>

Here is a breakdown of the components:

• Major version (<major>): Incremented for significant policy changes requiring
widespread updates.

• Minor version (<minor>): Changed for substantial but less disruptive updates.

• Major patch level (<patch>): Updated for any normative binding changes.

• Minor patch level (<subpatch>): Used for non-functional fixes like typos and clarifica-
tions.

Only the first three components are significant. You may include or omit the fourth.

When updating an existing package, only update the Standards-Version field after review-
ing the differences between the old and new policy versions and updating the package if
necessary.

Upgrading checklist

Before updating the Standards-Version field, follow these steps to ensure compliance:

1. Check the Standards-Version value in debian/control.

2. Review the changes introduced in newer versions. Refer to the Upgrading checklist210

section of theDebian PolicyManual for a summary of the changesmade in each version.

3. Review relevant sections of the policy based on listed changes and apply updates only
when necessary.

4. Test the package to confirm that it builds and behaves correctly with the new standard.

5. Update the Standards-Version field in debian/control file to the new version.

4.2.2. Resources
• Debian Policy Manual211

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

210 https://www.debian.org/doc/debian-policy/upgrading-checklist.html
211 https://www.debian.org/doc/debian-policy/index.html

94 of 146

https://www.debian.org/doc/debian-policy/upgrading-checklist.html
https://www.debian.org/doc/debian-policy/index.html

4.3. Supported architectures
Identifier Alternative Architecture Names Endianness Architecture Type
amd64 x86-64, x86_64, x64, AMD64, Intel 64 Little-Endian CISC
i3861 Intel x86, 80x86 Little-Endian CISC
arm64 ARM64, ARMv8, AArch64 Little-Endian RISC
armhf ARM32, ARMv7, AArch32, ARM Hard Float Little-Endian RISC
ppc64el PowerPC64 Little-Endian Little-Endian RISC
powerpc PowerPC (32-bit) Big-Endian RISC
s390x IBM System z, S/390, S390X Big-Endian CISC
riscv64 RISC-V (64-bit) Little-Endian RISC

4.3.1. Other architectures
Ubuntu doesn’t currently support any other architectures. This doesn’t mean that Ubuntu
won’t run on other architectures – in fact it is entirely possible for it to install without a prob-
lem, because Ubuntu is based on the Debian distribution, which has support for eight addi-
tional architectures (see Debian Supported Architectures212).

However, if you run into problems, the Ubuntu community may not be able to help you.

4.3.2. Resources
• Ubuntu Wiki – Supported Architectures213

• Ubuntu Wiki – i386214

• Statement on 32-bit i386 packages for Ubuntu 19.10 and 20.04 LTS215

• Ubuntu Wiki – S390X216

• Ubuntu Downloads217

• Endianness218

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

1 i386 is a partial-port of Ubuntu, which is supported as a multi-arch supplementary architecture. There is no
kernel, no installers, and no bootloaders for i386, therefore it cannot be booted as a pure i386 installation. You
have to crossbuild i386 or build in a i386 chroot on a amd64 host.
212 https://wiki.debian.org/SupportedArchitectures
213 https://help.ubuntu.com/community/SupportedArchitectures
214 https://wiki.ubuntu.com/i386
215 https://canonical.com/blog/statement-on-32-bit-i386-packages-for-ubuntu-19-10-and-20-04-lts
216 https://wiki.ubuntu.com/S390X
217 https://ubuntu.com/download
218 https://en.wikipedia.org/wiki/Endianness

95 of 146

https://wiki.debian.org/SupportedArchitectures
https://help.ubuntu.com/community/SupportedArchitectures
https://wiki.ubuntu.com/i386
https://canonical.com/blog/statement-on-32-bit-i386-packages-for-ubuntu-19-10-and-20-04-lts
https://wiki.ubuntu.com/S390X
https://ubuntu.com/download
https://en.wikipedia.org/wiki/Endianness

4.4. Filesystem hierarchy standard
Ubuntu adheres to the Filesystem Hierarchy Standard (FHS)219. FHS prescribes the structure
and organization of directories and files in UNIX-like operating systems. It also promotes
uniformity in documentation across systems.

The FHS prescribes required directories, their roles, and their minimum expected contents.
It provides a framework for separating shareable from unshareable files and static from vari-
able files.

So, compliance with the FHS ensures that software developers and system administrators
can predict where files reside.

4.4.1. File classification
FHS classifies files based on twomain distinctions. This classification determines their place-
ment in the directory structure:

• Shareable vs. unshareable: Shareable files can be stored on one host and used by
others. Examples include libraries in /usr/lib and documentation in /usr/share/doc.
Unshareable files are specific to a single system and cannot be shared. Examples in-
clude system configuration files in /etc and user-specific files in /home.

• Static vs. Variable: Static files include binaries, libraries, documentation, and other
files that don’t change without the system administrator’s intervention. Examples in-
clude files in /usr/bin, /usr/lib, or /etc. Variable files change during normal system
operation. Examples include mail files in /var/mail and PID files in /run.

These distinctions are interrelated as a file can fall into both classifications. For example:

• Files in /var/mail are shareable and variable.

• Files in /etc are unshareable and static.

However, static and variable files should be separated since static files can reside on read-
only media and don’t require frequent backups. To support this, the /var hierarchy was intro-
duced to isolate variable files from static directories like /usr, making /usr safely mountable
as read-only.

4.4.2. Core filesystem hierarchies
The FHS prescribes three main filesystem hierarchies for UNIX-like operating systems:

• the root filesystem (/) hierarchy

• the /usr hierarchy

• the /var hierarchy

The standard requires these hierarchies to maintain compatibility across UNIX-like systems
and support features like read-only mounting of /usr. Each hierarchy contains specific sub-
directories with defined purposes.

Root filesystem (/) hierarchy

The root filesystem is the top-level directory of the filesystem hierarchy. It contains all the
essential components needed toboot, restore, recover, and repair the system. Itmust remain
minimal to ensure reliability, portability, and ease of recovery.

A minimal root filesystem has the following benefits:

219 https://refspecs.linuxfoundation.org/fhs.shtml

96 of 146

https://refspecs.linuxfoundation.org/fhs.shtml

• supports mounting fromminimal media, such as recovery disks

• avoids storing unshareable, system-specific files on networked systems

• reduces the risk and impact of data corruption

• supports systems with limited storage or a separate partition

The root filesystem must not contain application-specific directories. All additional compo-
nents should be in /usr or /var.

The following are the required directories in the root filesystem:

Direc-
tory

Purpose

/bin for essential user command binaries used by all users, such as cp, ls, sh, mount
/boot for static files for the bootloader, including the kernel
/dev for device files representing system hardware
/etc for host-specific system configuration files andmust not contain binary executa-

bles
/lib for shared libraries and kernel modules required by binaries in /bin and /sbin
/media holds mount points for removable media such as USB drives or CDs
/mnt holds temporarymount point for filesystems intended formanual use by system

administrators
/opt holds add-on application packages, with each package in its own subdirectory
/run stores runtime variable data cleared on boot, including process IDs and UNIX-

domain sockets
/sbin for essential system binaries for booting and system recovery, such as fsck and

shutdown
/srv for site-specific data served by the system, such as web or FTP data
/tmp holds temporary files, which are not preserved across reboots
/usr secondary hierarchy for read-only user utilities and applications
/var for variable data like logs, mail, and spool files

The following directories may be present in the root filesystem if the corresponding subsys-
tems are installed:

Directory Purpose
/home for user home directories
/lib<qualifier> for alternate format libraries
/root serves as home directory of the root user

/usr hierarchy

The /usr hierarchy contains shareable, read-only data. It must not contain any host-specific
or variable files to:

• support safe mounting across multiple systems

• support read-only operation

• separate variable data from static program files

97 of 146

• maintain consistency across UNIX-like systems

Large software packagesmust not use a direct subdirectory under /usr. Instead, they should
reside in structured paths like /usr/share, /usr/lib, or /opt.

The following are the required directories in the /usr hierarchy:

Direc-
tory

Purpose

/usr/
bin

serves as primary directory for user-executable programs

/usr/
lib

contains object files, libraries, and internal binaries for programs, with subdirec-
tories used per application for architecture-dependent files

/usr/
local

reserved for system administrator use when installing local software

/usr/
sbin

holds non-essential system binaries for administration and used by root, but not
required for boot or recovery

/usr/
share

stores read-only, architecture-independent data such as documentation, icons,
and manuals

/var hierarchy

The /var hierarchy stores variable data files. These include system logs, mail, print spool
files, cache data, and files generated at runtime. Files in /var are modified frequently during
system operation. This separation from the static filesystem in /usr ensures that the /usr
filesystem remains read-only.

/var should beminimal to reduce the risk of system corruption and to simplify management.
Also, applications must not add top-level directories in /var without a system-wide implica-
tion.

The following are the required directories in the /var hierarchy:

Directory Purpose
/var/
cache

stores application-generated cache data. The data must be safely disposable
and reproducible

/var/lib holds variable state information specific to applications
/var/
local

holds variable data for software stored in /usr/local

/var/
lock

contains lock files to coordinate access to resources

/var/log stores system log files and directories
/var/opt holds variable data for add-on software packages in /opt
/var/run holds transient runtime data, such as PID files
/var/
spool

contains spool directories for tasks like mail and printing

/var/tmp holds temporary files that are preserved between reboots

98 of 146

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.5. Package version format
Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.6. DEP 3 – Patch file headers
This article lists and briefly explains standard fields of the Debian Enhancement Proposal 3
Specification (DEP-3) – Patch Tagging Guidelines220 for .patch file headers and also shows
Sample DEP-3 compliant headers (page 101).

4.6.1. Standard fields
Description or Subject required

This obligatory field contains at least a short description on the first line. When Subject
is used, it is expected that the long description is outside of the structured fields. With
Description it is possible to embed them in the field using continuation lines.

In both cases, the long description allows for a more verbose explanation of the patch
and its history.

This field should explain why the patch is vendor-specific (e.g., branding patch) when
that is the case. If the patch has been submitted upstream but has been rejected, the
description should also document why it’s kept and what were the reasons for the re-
ject.

It’s recommended to keep each line shorter than 80 characters.

Origin required

Note

If the Author field is present, the Origin field can be omitted and it’s assumed that
the patch comes from its author.

220 https://dep-team.pages.debian.net/deps/dep3/

99 of 146

https://dep-team.pages.debian.net/deps/dep3/
https://dep-team.pages.debian.net/deps/dep3/

This field should document the origin of the patch. In most cases, it should be a simple
URL. For patches backported/taken from upstream, it should point into the upstream
VCS web interfacewhen possible, otherwise it can simply list the relevant commit iden-
tifier (it should be prefixed with “commit:” in that case). For other cases, one should
simply indicate the URL where the patch was taken from (mailing list archives, distribu-
tion bug tracking system, etc.) when possible.

The field can be optionally prefixed with a single keyword followed by a comma and a
space to categorize the origin. The allowed keywords are:

• upstream in the case of a patch cherry-picked from the upstream VCS,

• backport in the case of an upstream patch that had to be modified to apply on the
current version,

• vendor for a patch created by Debian or another distribution vendor, or

• other for all other kind of patches.

In general, a user-created patch grabbed from a Bug Tracking System should be catego-
rized as other. When copying a patch from another vendor, the meta-information (and
hence this field) should be kept if present, or created if necessary with a vendor origin.

Bug-<Vendor> or Bug optional
It contains one URL pointing to the related bug (possibly fixed by the patch). The Bug
field is reserved for the bug URL of the upstream bug tracker. Those fields can be used
multiple times if several bugs are concerned.

The <Vendor> name is explicitly encoded in the field name so that vendors can share
patches among them without having to update the meta-information in most cases.
The upstream bug URL is special cased because it’s the central point of cooperation
and it must be easily distinguishable among all the bug URLs.

Forwarded optional
Any value other than no or not-needed means that the patch has been forwarded up-
stream. Ideally the value is an URL proving that it has been forwarded and where one
can find more information about its inclusion status.

If the field is missing, its implicit value is yes if the Bug field is present, otherwise it’s
no. The field is really required only if the patch is vendor specific, in that case its
value should be not-needed to indicate that the patchmust not be forwarded upstream
(whereas no simply means that it has not yet been done).

Author or From optional
This field can be used to record the name and email of the patch author (e.g., John Bear
<foo@example.com>). Its usage is recommendedwhen thepatchauthordidnot add copy-
right notices for his work in the patch itself. It’s also a good idea to add this contact
information when the patch needs to bemaintained over time because it has very little
chance of being integrated upstream.

This field can be used multiple times if several people authored the patch.

Reviewed-by or Acked-by optional
This field can be used to document the fact that the patch has been reviewed and ap-
proved by someone. It should list their name and email in the standard format (e.g.,
John Bear <foo@example.com>).

This field can be used multiple times if several people reviewed the patch.

100 of 146

Last-Update optional
This field can be used to record the date when the meta-information was last updated.
It should use the ISO date format YYYY-MM-DD.

Applied-Upstream optional
This field can be used to document the fact that the patch has been applied upstream.

It may contain the upstream version expected to contain this patch, or the URL or com-
mit identifier of the upstream commit (with commit identifiers prefixed with commit:,
as in the Origin field), or both separated by a comma and a space.

4.6.2. Sample DEP-3 compliant headers
A patch cherry-picked from upstream:

From: Ulrich Drepper <drepper@redhat.com>
Subject: Fix regex problems with some multi-bytes characters

* posix/bug-regex17.c: Add testcases.
* posix/regcomp.c (re_compile_fastmap_iter): Rewrite COMPLEX_BRACKET
handling.

Origin: upstream, http://sourceware.org/git/?p=glibc.git;a=commitdiff;h=bdb56bac
Bug: http://sourceware.org/bugzilla/show_bug.cgi?id=9697
Bug-Debian: http://bugs.debian.org/510219

A patch created by the Debian maintainer John Doe, which got forwarded and rejected:

Description: Use FHS compliant paths by default
Upstream is not interested in switching to those paths.
.
But we will continue using them in Debian nevertheless to comply with
our policy.
Forwarded: http://lists.example.com/oct-2006/1234.html
Author: John Doe <johndoe-guest@users.alioth.debian.org>
Last-Update: 2006-12-21

A vendor specific patch notmeant for upstream submitted on theBTS by aDebian developer:

Description: Workaround for broken symbol resolving on mips/mipsel
The correct fix will be done in etch and it will require toolchain
fixes.
Forwarded: not-needed
Origin: vendor, http://bugs.debian.org/cgi-bin/bugreport.cgi?msg=80;bug=265678
Bug-Debian: http://bugs.debian.org/265678
Author: Thiemo Seufer <ths@debian.org>

A patch submitted and applied upstream:

Description: Fix widget frobnication speeds
Frobnicating widgets too quickly tended to cause explosions.
Forwarded: http://lists.example.com/2010/03/1234.html
Author: John Doe <johndoe-guest@users.alioth.debian.org>
Applied-Upstream: 1.2, http://bzr.example.com/frobnicator/trunk/revision/123
Last-Update: 2010-03-29

101 of 146

4.6.3. Resources
• DEP-3 Specification – Patch Tagging Guidelines221

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.7. Launchpad text markup
Any textarea222 input field on Launchpad will process the entered text to recognise certain
patterns to enhance the resulting displayed output.

Examples of textareas where the Launchpad text markup is accepted are:

Bug reporting

221 https://dep-team.pages.debian.net/deps/dep3/
222 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

102 of 146

https://dep-team.pages.debian.net/deps/dep3/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

Bug report descriptions and comments

Merge proposal creation

103 of 146

Comment for a Merge proposal

104 of 146

Profile description

PPA description

Unlike platforms like GitHub, Launchpad unfortunately only recognises a very limited set of
markup patterns when youwrite comments. Themost useful pattern are documented in this
article.

Note

Support for awider rangeofmarkuppatterns is a very commonandold request/wish; take
for example LP: #391780223.

You can “upvote” (mark yourself as affected) or leave a comment on this bug report to
show your support for the feature request.

Reminder: Please stay civil! The Launchpad team has only limited resources.

4.7.1. Referencing Launchpad bugs
It is very common to refer to a specific Launchpad bug e.g. to point other people to a bug
during a discussion.

Pattern

The following pattern is used by Launchpad to detect bug references:

LP: #<LP-Bug-Number>[, #<LP-Bug-Number>]...

This pattern is case invariant, and the amount of blank space can be variable, but if you place
blank space anywhere else, the regular expression used by Launchpad might not parse the
bug reference correctly.

Note

223 https://bugs.launchpad.net/launchpad/+bug/391780

105 of 146

https://bugs.launchpad.net/launchpad/+bug/391780

This pattern is also commonly used outside of Launchpad e.g. on IRC , in source package
changelogs or on Discourse.

Examples

The following table shows examples how text entered into a text input fieldwill be displayed
on Launchpad:

106 of 146

Input Result Comment

LP: #1

LP: #1224 references Launchpad bug
with the number 1

(LP: #1)

(LP: #1225) a bug reference can be sur-
rounded by brackets

LP: #1, #2.

LP: #1226, #2227.

there can be multiple bug
references
separated by a ,

LP:
#1,
#2,
#3,
#4

LP:
#1228,
#2229,
#3230,
#4231

the amount of blank space
can be variable and
a new-line will not disrupt
this pattern

lp: #1

lp: #1232 the pattern is case invariant

(lp: #1)

(lp: #1233) the pattern is case invariant

lp: #1, #2.

lp: #1234, #2235. the pattern is case invariant

LP #1

LP #1 the : is strictly needed

LP: #1 , #2

LP: #1236 , #2

if you place blank space
anywhere else the
regular expressionmight not
parse the
input correctly

LP: #1, #2,

#3

LP: #1237, #2238,

#3

an empty new-line will
interrupt the pattern,
but a trailing ,will not

107 of 146

https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/3
https://bugs.launchpad.net/ubuntu/+bug/4
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/2

4.7.2. Blank spaces
Launchpad will:

• cut off any blank space to the right,

• keep any blank space to the left, and

• reduce any blank space between non-blank-space characters to just one (this includes
new-line characters as well).

Note

Technically Launchpad passes blank space through and the browser just ignores the blank
space.

Warning

Because of the behaviour described above youwill have a hard time trying towrite a table
or long chunks of blank space between two sections.

The following table shows examples how text entered into a text input field will be dis-
played on Launchpad:

224 https://bugs.launchpad.net/ubuntu/+bug/1
225 https://bugs.launchpad.net/ubuntu/+bug/1
226 https://bugs.launchpad.net/ubuntu/+bug/1
227 https://bugs.launchpad.net/ubuntu/+bug/2
228 https://bugs.launchpad.net/ubuntu/+bug/1
229 https://bugs.launchpad.net/ubuntu/+bug/2
230 https://bugs.launchpad.net/ubuntu/+bug/3
231 https://bugs.launchpad.net/ubuntu/+bug/4
232 https://bugs.launchpad.net/ubuntu/+bug/1
233 https://bugs.launchpad.net/ubuntu/+bug/1
234 https://bugs.launchpad.net/ubuntu/+bug/1
235 https://bugs.launchpad.net/ubuntu/+bug/2
236 https://bugs.launchpad.net/ubuntu/+bug/1
237 https://bugs.launchpad.net/ubuntu/+bug/1
238 https://bugs.launchpad.net/ubuntu/+bug/2

108 of 146

Input Result

| Column 1 | Column 2 | Column 3
|
------------+----------+------------
Example
Example
Example

| Column 1 | Column 2 | Column 3 |
|------------+----------+-------------|
Example	table	text
Example	table	text
Example	table	text

Here are two paragraphs with lots
of blank space between them.

But they're still just two paragraphs

Here are two paragraphs with lots of
blank space between them.

But they’re still just two paragraphs

4.7.3. URI addresses
Launchpad can recognise http, https, ftp, sftp, mailto, news, irc and jabber URIs.

Note

tel, urn, telnet, ldap URI , relative URLs like example.com and email addresses like
test@example.com are NOT recognised.

Examples

The following examples show how text entered into a text input field will be displayed on
Launchpad:

Input
http://localhost:8086/example/sample.
html

Result http://localhost:8086/example/sample.
html

109 of 146

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
http://localhost:8086/example/sample.
html

Result http://localhost:8086/example/sample.
html

Input
ftp://localhost:8086/example/sample.
html

Result ftp://localhost:8086/example/sample.html

Input
sftp://localhost:8086/example/sample.
html.

Result sftp://localhost:8086/example/sample.
html.

Input
http://localhost:8086/example/sample.
html;

Result http://localhost:8086/example/sample.
html;

Input
news://localhost:8086/example/sample.
html:

Result news://localhost:8086/example/sample.
html:

Input
http://localhost:8086/example/sample.
html?

Result http://localhost:8086/example/sample.
html?

110 of 146

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
ftp://localhost:8086/example/sample.html
sftp://localhost:8086/example/sample.html
sftp://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
news://localhost:8086/example/sample.html
news://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
http://localhost:8086/example/sample.
html,

Result http://localhost:8086/example/sample.
html,

Input
<http://localhost:8086/example/sample.
html>

Result <http://localhost:8086/example/sample.
html>

Input
<http://localhost:8086/example/sample.
html>,

Result <http://localhost:8086/example/sample.
html>,

Input
<http://localhost:8086/example/sample.
html>.

Result <http://localhost:8086/example/sample.
html>.

Input
<http://localhost:8086/example/sample.
html>;

Result <http://localhost:8086/example/sample.
html>;

Input
<http://localhost:8086/example/sample.
html>:

Result <http://localhost:8086/example/sample.
html>:

111 of 146

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
<http://localhost:8086/example/sample.
html>?

Result <http://localhost:8086/example/sample.
html>?

Input
(http://localhost:8086/example/sample.
html)

Result (http://localhost:8086/example/sample.
html)

Input
(http://localhost:8086/example/sample.
html),

Result (http://localhost:8086/example/sample.
html),

Input
(http://localhost:8086/example/sample.
html).

Result (http://localhost:8086/example/sample.
html).

Input
(http://localhost:8086/example/sample.
html);

Result (http://localhost:8086/example/sample.
html);

Input
(http://localhost:8086/example/sample.
html):

Result (http://localhost:8086/example/sample.
html):

112 of 146

http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html
http://localhost:8086/example/sample.html

Input
http://localhost/example/sample.html?
a=b&b=a

Result http://localhost/example/sample.html?a=
b&b=a

Input
http://localhost/example/sample.html?
a=b&b=a.

Result http://localhost/example/sample.html?a=
b&b=a.

Input
http://localhost/example/sample.html?
a=b&b=a,

Result http://localhost/example/sample.html?a=
b&b=a,

Input
http://localhost/example/sample.html?
a=b&b=a;

Result http://localhost/example/sample.html?a=
b&b=a;

Input
http://localhost/example/sample.html?
a=b&b=a:

Result http://localhost/example/sample.html?a=
b&b=a:

Input
http://localhost/example/sample.html?
a=b&b=a:b;c@d_e%f~g#h,j!k-l+m$n*o'p

Result http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-
l+m$n*o’p239

239 http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect\TU\textdollarn*o'p

113 of 146

http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a
http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect \TU\textdollar n*o'p
http://localhost/example/sample.html?a=b&b=a:b;c@d_e%f~g#h,j!k-l+m\protect \TU\textdollar n*o'p

Input
http://www.example.com/test/
example(parentheses).html

Result http://www.example.com/test/
example(parentheses).html

Input
http://www.example.com/test/example-
dash.html

Result http://www.example.com/test/
example-dash.html

Input
http://www.example.com/test/example_
underscore.html

Result http://www.example.com/test/example_
underscore.html

Input
http://www.example.com/test/example.
period.x.html

Result http://www.example.com/test/example.
period.x.html

Input
http://www.example.com/test/example!
exclamation.html

Result http://www.example.com/test/example!
exclamation.html

Input
http://www.example.com/test/example~
tilde.html

Result http://www.example.com/test/
example~tilde.html

114 of 146

http://www.example.com/test/example(parentheses).html
http://www.example.com/test/example(parentheses).html
http://www.example.com/test/example-dash.html
http://www.example.com/test/example-dash.html
http://www.example.com/test/example_underscore.html
http://www.example.com/test/example_underscore.html
http://www.example.com/test/example.period.x.html
http://www.example.com/test/example.period.x.html
http://www.example.com/test/example!exclamation.html
http://www.example.com/test/example!exclamation.html
http://www.example.com/test/example~tilde.html
http://www.example.com/test/example~tilde.html

Input
http://www.example.com/test/
example*asterisk.html

Result http://www.example.com/test/
example*asterisk.html

Input
irc://chat.freenode.net/launchpad

Result irc://chat.freenode.net/launchpad

Input
irc://chat.freenode.net/%23launchpad,
isserver

Result irc://chat.freenode.net/%23launchpad,
isserver

Input
mailto:noreply@launchpad.net

Result mailto:noreply@launchpad.net240

Input
jabber:noreply@launchpad.net

Result jabber:noreply@launchpad.net

Input
http://localhost/foo?xxx&

Result http://localhost/foo?xxx&

Input
http://localhost?testing=[square-
brackets-in-query]

Result http://localhost?testing=
{[}square-brackets-in-query{]}

240 noreply@launchpad.net

115 of 146

http://www.example.com/test/example*asterisk.html
http://www.example.com/test/example*asterisk.html
irc://chat.freenode.net/launchpad
irc://chat.freenode.net/%23launchpad,isserver
irc://chat.freenode.net/%23launchpad,isserver
mailto:noreply@launchpad.net
jabber:noreply@launchpad.net
http://localhost/foo?xxx&
http://localhost?testing={[}square-brackets-in-query{]}
http://localhost?testing={[}square-brackets-in-query{]}

4.7.4. Removal of “
If the entire comment is encapsulated in “ like this Launchpad will remove the “.

The following table shows an example how text entered into a text input field will be dis-
played on Launchpad:

Input Result

"Content"

Content

4.7.5. Resources
• Comments (help.launchpad.net)241

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

4.8. Glossary
80x86

See i386

AA
Abbreviation for Archive Admin

AArch32
See armhf

AArch64
See arm64

ABI
Abbreviation for Application Binary Interface

Warning

Do not confuse with Application Programming Interface (API)!

amd64
CPU Architecture identifier for the AMD64 (also known as x64, x86-64, x86_64, and Intel
64) architecture; a 64-bit version of the i386 instruction set.

241 https://help.launchpad.net/Comments

116 of 146

https://help.launchpad.net/Comments

See also: X86-64 (Wikipedia)242

ANAIS
Abbreviation for Architecture Not Allowed In Source

API
Abbreviation for Application Programming Interface

Warning

Do not confuse with Application Binary Interface (ABI)!

Application Binary Interface
Defines how two binary applications interface eachother like calling conventions, data
type sizes, and system call interfaces, ensuring compatibility and proper communica-
tion between different parts of a software system, such as libraries, executables, and
the Operating System. Application Binary Interfaces are crucial for enabling software
components compiled on different systems to work together seamlessly.

See also: Kernel ABI (Ubuntu Wiki)243, Application binary interface (Wikipedia)244

Warning

Do not confuse with Application Programming Interface (API)!

Application Programming Interface
An Application Programming Interface (API), is a set of rules that allows different soft-
ware applications to communicate with each other. It defines the methods and data
formats that applications can use to request and exchange information, perform spe-
cific tasks, or access the functionality of another software component, such as an Op-
erating System, library, or online service. APIs enable developers to build upon exist-
ing software and create new applications by providing a standardized way to interact
with external systems, services, or libraries without needing to understand their inter-
nal workings.

Warning

Do not confuse with Application Binary Interface (ABI)!

APT
Abbreviation for Advanced Package Manager.

See: Advanced Packaging Tool (Ubuntu Server documentation)245

Architecture
Within the context of Ubuntu, this refers to the system architecture (more specifically,
the CPU architecture and its instruction set) an application is designed for.

242 https://en.wikipedia.org/wiki/X86-64
243 https://wiki.ubuntu.com/KernelTeam/BuildSystem/ABI
244 https://en.wikipedia.org/wiki/Application_binary_interface
245 https://ubuntu.com/server/docs/package-management#advanced-packaging-tool

117 of 146

https://en.wikipedia.org/wiki/X86-64
https://wiki.ubuntu.com/KernelTeam/BuildSystem/ABI
https://en.wikipedia.org/wiki/Application_binary_interface
https://ubuntu.com/server/docs/package-management#advanced-packaging-tool

See also: Supported architectures (page 95), Computer Architecture (Wikipedia)246

Architecture Not Allowed In Source
Work in Progress

Archive
See Ubuntu Archive

Archive Admin
An administrator that is responsible for maintenance tasks of the Ubuntu Package
Archive, including processing of new Packages, migration of Packages between Com-
ponents, and other administrative matters.

See also: “Ubuntu Package Archive Administrators” team on Launchpad247

Archive Mirror
AMirror of the Ubuntu Archive.

See the sectionMirrors (page 71) for more details.

ARM
ARM (formerly an acronym for Advanced RISC Machines and originally Acorn RISC Ma-
chine) is a widely used family of RISC CPU Architectures known for their efficiency, low
power consumption, and versatility, which are widely used in Embedded Systems and
mobile devices.

Notable examples are arm64 and armhf .

See also: ARM architecture family (Wikipedia)248

ARM Hard Float
See armhf

arm64
CPU Architecture identifier (also known as ARM64, ARMv8, and AArch64) for a 64-bit
ARM Architecture variant.

See also: AArch64 (Wikipedia)249

armhf
CPU Architecture identifier (also known as ARM32, ARMv7 , AArch32, and ARM Hard
Float) for a 32-bit ARM Architecture variant.

See also: AArch64 (Wikipedia)250

ARMv7
See armhf

ARMv8
See arm64

autopkgtest
autopkgtest(1)251 is a software that interprets and executes tests found in source pack-
ages that follow the DEP 8 specification.

246 https://en.wikipedia.org/wiki/Computer_architecture
247 https://launchpad.net/~ubuntu-archive
248 https://en.wikipedia.org/wiki/ARM_architecture_family
249 https://en.wikipedia.org/wiki/AArch64
250 https://en.wikipedia.org/wiki/AArch64
251 https://manpages.ubuntu.com/manpages/noble/en/man1/autopkgtest.1.html

118 of 146

https://en.wikipedia.org/wiki/Computer_architecture
https://launchpad.net/~ubuntu-archive
https://en.wikipedia.org/wiki/ARM_architecture_family
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/AArch64
https://manpages.ubuntu.com/manpages/noble/en/man1/autopkgtest.1.html

See also: autopkgtest.ubuntu.com252

autopkgtest Cloud
The Ubuntu project operates a testing infrastructure used to execute automated tests
forUbuntu source packages. It is an implementationof theDEP8 specification, enabling
large-scale testing across a variety of architectures and environments.

See:

Backports
Work in Progress

Bazaar
A distributed Version Control System to collaborate on software development, that was
developed by Canonical and is part of the GNU system.

Bazaar as a Canonical project is discontinued. Development has been carried forward
in the community as Breezy .

See also: Bazaar (Launchpad) <https://launchpad.net/bzr>

Note

Bazaar is replaced in favor of a git-based workflow as the main Version Control Sys-
tem within Ubuntu. There are some projects that still use it, but be aware that
documents that reference Bazaar as an actively used Version Control System within
Ubuntu are most likely outdated.

See also: git-ubuntu

best-effort
Work in Progress

Big-Endian
Work in Progress

See also: Endianness

Binaries
Work in Progress

Binary Package
A Debian binary package is a standardized format with the file extension .deb that the
Package Manager (dpkg(1)253 or apt(8)254) can understand to install and uninstall soft-
wareona targetmachine to simplify distributing software to a targetmachine andman-
aging software on a target machine.

See: Binary Packages (explanation) (page 56)

Blank space
Blank space characters refer to characters in a text (especially SourceCode) that areused
for formatting and spacingbut donot produce visiblemarks or symbolswhen rendered.
Common blank space characters include spaces, tabs and newline characters.

252 https://autopkgtest.ubuntu.com/
253 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
254 https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html

119 of 146

https://autopkgtest.ubuntu.com/
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg.1.html
https://manpages.ubuntu.com/manpages/noble/en/man8/apt.8.html

Branch
Work in Progress

Breezy
A Fork of the Bazaar Version Control System.

See also: Breezy (Launchpad)255

BTS
Abbreviation for Bug Tracking System

Bug
In software development a “bug” refers to unintended or unexpected behaviour of a
computer program or system that produce incorrect results, or crashes. Bugs can oc-
cur due to programming mistakes, design issues, or unexpected interactions between
different parts of the software.

Identifying and fixing Bugs is a fundamental part of the software development process
to ensure that the software functions as intended and is free of errors.

See also: Software bug (Wikipedia)256

Bug supervisor
Work in Progress

Bug Tracking System
A platform used by software development teams to manage and monitor the progress
of reported issues or Bugs within a software project. It provides a centralized platform
for users to report problems, assign tasks to developers, track the status of issues, pri-
oritize fixes, and maintain a comprehensive record of software defects and their reso-
lutions. This system helps streamline the debugging process and enhances communi-
cation among teammembers, ultimately leading to improved software quality.

Launchpad is the Bug Tracking System for Ubuntu Packages.

See also: Bug tracking system (Wikipedia)257

BZR
Abbreviation for Bazaar

Canonical
Canonical Ltd. is a UK-based private company that is devoted to the Free and Open
Source Software philosophy and created several notable software projects, including
Ubuntu. Canonical offers commercial support for Ubuntu and related services and is
responsible for delivering six-monthly milestone releases and regular LTS releases for
enterprise production use, as well as security updates, support and the entire online
infrastructure for community interaction.

Find out more on the Canonical website: canonical.com258

Canonical Discourse
A Discourse instance for internal/company-wide discussions. The discussions here will
only be accessible to the Canonical employes.

255 https://launchpad.net/brz
256 https://en.wikipedia.org/wiki/Software_bug
257 https://en.wikipedia.org/wiki/Bug_tracking_system
258 https://canonical.com/

120 of 146

https://launchpad.net/brz
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Bug_tracking_system
https://canonical.com/

See: discourse.canonical.com259

Canonical partner archive
Work in Progress

CD
Abbreviation for Continuous Delivery

CD Mirror
AMirror of the Ubuntu Image archive (cdimage.ubuntu.com260).

See the complete list of officially recognized Ubuntu image archive mirrors261.

Central Processing Unit
The main component of a computer, that is responsible for executing the instructions
of a computer program, such as arithmetic, logic, and input/output (I/O) operations.

Certified Ubuntu Engineer
Develop and certify your skills on the world’s most popular Linux OS . https://ubuntu.
com/credentials

Changelog
The debian/changelog file in a Source Package.

See: Basic overview of the debian/ directory (page 84)

See also: Section 4.4 Debian changelog (Debian Policy Manual v4.6.2.0)262

Checkout
Work in Progress

CI
Abbreviation for Continuous Integration

Circle of Friends
TheUbuntu logo is calledCircle of Friends, because it is derived fromapicture that shows
three friends extending their arms, overlapping in the shape of a circle. It should rep-
resent the core values of Ubuntu263: Freedom, Reliable, Precise and Collaborative.

259 https://discourse.canonical.com
260 https://cdimage.ubuntu.com/
261 https://launchpad.net/ubuntu/+cdmirrors
262 https://www.debian.org/doc/debian-policy/ch-source.html#debian-changelog-debian-changelog
263 https://design.ubuntu.com/brand

121 of 146

https://discourse.canonical.com
https://cdimage.ubuntu.com/
https://launchpad.net/ubuntu/+cdmirrors
https://ubuntu.com/credentials
https://ubuntu.com/credentials
https://www.debian.org/doc/debian-policy/ch-source.html#debian-changelog-debian-changelog
https://design.ubuntu.com/brand

CISC
Abbreviation for Complex Instruction Set Computer

CLA
Abbreviation for Contributor Licence Agreement

CLI
Abbreviation for Command Line Interface

Closed Source Software
Work in Progress

CoC
Abbreviation for Code of Conduct

Code name
Work in Progress

Code of Conduct
Work in Progress

See also: Ubuntu Code of Conduct

Code Review
Work in Progress

CoF
Abbreviation for Circle of Friends

Command Line Interface
Work in Progress

Commit
Work in Progress

Common Vulnerabilities and Exposures
Work in Progress

Complex Instruction Set
A CPU Architecture featuring a rich and diverse set of instructions, often capable of
performing complex operations in a single instruction. CISC processors aim tominimize
the number of instructions needed to complete a task, potentially sacrificing execution
speed for instruction richness.

See also: Complex instruction set computer (Wikipedia)264

264 https://en.wikipedia.org/wiki/Complex_instruction_set_computer

122 of 146

https://en.wikipedia.org/wiki/Complex_instruction_set_computer

Component
Components are logical subdivisions or namespaces of the Packages in a Suite (page 70).
The APT Package Manager can individually subscribe to the components of a Suite
(page 70).

The Packages of an Ubuntu Series (page 69) are categorized if they are Open Source
Software and part of the Base Packages for a given Series (page 69) and sorted into
the components main (page 71), restricted (page 71), universe (page 71), or multiverse
(page 71), as shown in the following table:

Open Source Software Closed Source Software
Ubuntu Base Packages main (page 71) restricted (page 71)
Community Packages universe (page 71) multiverse (page 71)

See: Components (explanation) (page 70)

Continuous Delivery
Work in Progress

See also: Continuous delivery (Wikipedia)265

Continuous Integration
Work in Progress

See also: Continuous integration (Wikipedia)266

Contributor Licence Agreement
Work in Progress

Control File
The debian/control file in a Source Package.

See: Basic overview of the debian/ directory (page 84)

This can also refer to aDebian source control file (.dscfile) or the control file in a Binary
Package (.deb file).

See: Chapter 5. Control files and their fields (Debian Policy Manual v4.6.2.0)267

Coordinated Release Date
The date at which the details of a CVE are to be publicly disclosed.

Copyleft
Licenses which implement copyleft grant certain freedoms to their works, under the
condition that these freedoms are preserved in all derivative works.

One famous example of copyleft is theGNU General Public License, which gives its users
Free Software rights as long as equivalent rights are maintained in modified distribu-
tions of said software.

Copyright
Work in Progress

Copyright File
The debian/copyright file in a Source Package.

265 https://en.wikipedia.org/wiki/Continuous_delivery
266 https://en.wikipedia.org/wiki/Continuous_integration
267 https://www.debian.org/doc/debian-policy/ch-controlfields.html

123 of 146

https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_integration
https://www.debian.org/doc/debian-policy/ch-controlfields.html

See: Basic overview of the debian/ directory (page 84)

See also: Section 4.5. Copyright (Debian Policy Manual v4.6.2.0)268

CPU
Abbreviation for Central Processing Unit

CRD
Abbreviation for Coordinated Release Date

Cryptographic Signature
Work in Progress

CUE
Abbreviation for Certified Ubuntu Engineer

Current Release in Development
Ubuntu follows a strict time-based release cycle. Every sixmonths a newUbuntu version
is released.

The “Current Release in Development” is the Ubuntu version that is in development for
the next release at any given time. It is also often referred to as “devel”.

See: Ubuntu Releases (explanation) (page 64)

CVE
Abbreviation for Common Vulnerabilities and Exposures

Debian
Debian is a widely used community-driven Free and Open Source Operating System
known for its stability and extensive software Repository . It follows a strict commit-
ment to Free and Open Source Software principles and serves as the basis for various
Linux Distributions (including Ubuntu). Debian’ Package Manager , APT , simplifies soft-
ware installation and updates, making it a popular choice for servers and desktops.

See also: www.debian.org269

Debian Enhancement Proposal
A Debian Enhancement Proposal (DEP) is a formal document that outlines proposed
changes, enhancements, or new processes within the Debian project . DEPs provide a
structured way for contributors to suggest, discuss, and document improvements to
Debian’ software, policies, or workflows.

See: dep-team.pages.debian.net270

Debian System Administration
Work in Progress

deb
debs

.deb is the file extension of a Debian Binary Package.

DEP
Abbreviation for Debian Enhancement Proposal

DEP 3
DEP 3 is a specification from the Debian project that defines

268 https://www.debian.org/doc/debian-policy/ch-source.html#copyright-debian-copyright
269 https://www.debian.org/
270 https://dep-team.pages.debian.net/

124 of 146

https://www.debian.org/doc/debian-policy/ch-source.html#copyright-debian-copyright
https://www.debian.org/
https://dep-team.pages.debian.net/

See: DEP 3 – Patch file headers (reference article) (page 99)
See also: Patches (explanation article) (page 56)

DEP 8
DEP 8 is a specification from the Debian project that defines a standardized framework
for automated testing of source and binary packages.

See: Current DEP-8 Specification271

Detached Signature
A detached signature is a Digital Signature that is separated from the data it signs. In
contrast to an embedded signature, which is included within the data it signs, a de-
tached signature is kept as a separate file or entity.

Devel
Shorthand term for the Current Release in Development .

Developer Membership Board
Work in Progress

See also: Developer Membership Board (Ubuntu Wiki)272

diff
A text format that shows the difference between files that are compared. A file that
contains text in this format usually has the file extension .diff. This file format does not
work well for comparing files in a non-text encoded fromat (e.g. .bin, .png, .jpg).

See also diff(1)273, git-diff(1)274

Discourse
An open-source forum software that is used by Ubuntu and Canonical.

See also: Ubuntu Discourse, Canonical Discourse, Discourse Project Homepage275

Distribution
In general, a software distribution (also called “distro”) is a set of software components
that is distributed as a whole to users.

Usually people think specifically of Linux distributions. A Linux distribution (or distro),
is a complete Operating System based on the Linux Kernel. It includes essential sys-
tem components, software applications, and Package Management Tools, tailored to a
specific purpose or user preferences. Linux distributions vary in features, desktop en-
vironments, and software Repositories, allowing users to choose the one that best suits
their needs.

See also: Linux distribution (Wikipedia)276

DMB
Abbreviation for Developer Membership Board

271 https://dep-team.pages.debian.net/deps/dep8/
272 https://wiki.ubuntu.com/DeveloperMembershipBoard
273 https://manpages.ubuntu.com/manpages/noble/en/man1/diff.1.html
274 https://manpages.ubuntu.com/manpages/noble/en/man1/git-diff.1.html
275 https://www.discourse.org/
276 https://en.wikipedia.org/wiki/Linux_distribution

125 of 146

https://dep-team.pages.debian.net/deps/dep8/
https://wiki.ubuntu.com/DeveloperMembershipBoard
https://manpages.ubuntu.com/manpages/noble/en/man1/diff.1.html
https://manpages.ubuntu.com/manpages/noble/en/man1/git-diff.1.html
https://www.discourse.org/
https://en.wikipedia.org/wiki/Linux_distribution

DNS
Abbreviation for Domain Name System

Domain Name System
Work in Progress

Downstream
Asoftwareproject(s) (and associatedentities) that dependonanother softwareproject
directly or indirectly.

See Downstream (explanation) (page 50)

DSA
Abbreviation for Debian System Administration

dsc
.dsc is the file extension of a Debian source control file.

See: Chapter 5. Control files and their fields (Debian Policy Manual v4.6.2.0)277

End of Life
Refers to the End of Support (Life) for a product/software.

End of Line
The end of a line of encoded text is indicated by a control character or sequence of
control characters.

This is relevant for text parser which often parse text line by line.

The most common examples for control character(s) that indicate a end of line are:

Operating System Abbrevia-
tion*

hex
value(s)*

dec
value(s)*

Escape se-
quence*

Unix and Unix-like sys-
tems

LF 0A 10 \n

Windows systems CR LF 0D 0A 13 10 \r \n

* for the character encoding ASCII

End of Support
Work in Progress

End-user license agreement
Work in Progress

Embedded Systems
Work in Progress

Endianness
Work in Progress

See also: Little-Endian, Big-Endian, Endianness (Wikipedia)278

EoL
Abbreviation for either End of Life or End of Line

277 https://www.debian.org/doc/debian-policy/ch-controlfields.html
278 https://en.wikipedia.org/wiki/Endianness

126 of 146

https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://en.wikipedia.org/wiki/Endianness

EoS
Abbreviation for End of Support

ESM
Abbreviation for Expanded Security Maintenance

EULA
Abbreviation for End-user license agreement

Expanded Security Maintenance
Work in Progress

See also: Expanded Security Maintenance (homepage)279

Failed to build from Source
Work in Progress

Failed to install
Work in Progress

Feature Freeze Exception
Work in Progress (see https://wiki.ubuntu.com/FreezeExceptionProcess)

Feature Request
Work in Progress

Federal Information Processing Standards
A set of standards and guidelines of the United States federal government developed
by National Institute of Standards and Technology (NIST) to ensure the security and in-
teroperability of computer systems and software used by non-military federal agencies
and its contractors.

See also: Federal Information Processing Standards (Wikipedia)280

FFE
Abbreviation for Feature Freeze Exception

FIPS
Abbreviation for Federal Information Processing Standards

Fork
In the context of Open Source Software development, a “fork” refers to the process of
creating a new, independent version of a software project by copying its Source Code
to evolve separately, potentially with different goals, features, or contributors.

FOSS
Abbreviation for Free and Open Source Software

FR
Abbreviation for Feature Request

Free and Open Source Software
The term “Free and Open Source Software” encompasses both Free Software andOpen
Source Software. In short, free and open-source software not only makes its Source
Code publicly available, but also allows users to use, distribute, modify, and distribute
modified copies of the software free of charge.

279 https://ubuntu.com/esm
280 https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards

127 of 146

https://ubuntu.com/esm
https://wiki.ubuntu.com/FreezeExceptionProcess
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards

See also: Free and open-source software (Wikipedia)281

Free Software
A common definition of Free Software is any software which guarantees the Free Soft-
ware Foundation’s four essential freedoms:

• The freedom to run the program as you wish, for any purpose (freedom 0).

• The freedom to study how the program works, and change it so it does your com-
puting as you wish (freedom 1). This requires access to the source code.

• The freedom to redistribute copies of the original software program (freedom 2).

• The freedom to distribute copies of your modified versions to others (freedom 3).
This also requires access to the source code.

The definition of free software has significant overlap with Open Source Software, so
the two categories are often collectively referred to as Free and Open Source Software.

See also: Free software (Wikipedia)282, FSF Four Freedoms283

FTBFS
Abbreviation for Failed to build from Source

FTI
Abbreviation for Failed to install

GA
Abbreviation for General Availability

General Availability
Work in Progress

General Public License
The GNU General Public Licenses (GPL) are a set of Free Software licenses. They grant
users the ability to use, study, modify, and distribute the software and source code.
Additionally, the GPLs are Copyleft , so any derivative works must be distributed with
the same or requivalent freedoms.

Prominent projects which use a version of the GPL include git and Linux .

git
Work in Progress

git-ubuntu
Work in Progress

GNU
GNU is a recursive acronym for “GNU’s Not Unix!”. It is a collection of Free and Open
Source Software that can be used as an Operating System and aims to respect its users’
freedom. The collection of Free and Open Source Software is often used with Unix-like
kernels like Linux (these Distributions are commonly referred to as “GNU/Linux”).

For example, Debian and Ubuntu are GNU/Linux Distributions.

Most of the GNU software is licensed under the GNU General Public License (GPL).

281 https://en.wikipedia.org/wiki/Free_and_open-source_software
282 https://en.wikipedia.org/wiki/Free_software
283 https://static.fsf.org/nosvn/posters/handout-four-freedoms.pdf

128 of 146

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_software
https://static.fsf.org/nosvn/posters/handout-four-freedoms.pdf

See also: GNU (Wikipedia)284, www.gnu.org285

GPL
Abbreviation for GNU General Public License

GUI
Abbreviation for Graphical User Interface

i386
CPU Architecture identifier (also known as Intel x86, 80x86, and x86), thatwas originally
released as 80386; a 32-Bit Microprocessor by Intel.

See also: i386 (Wikipedia)286

IBM
Work in Progress Abbreviation for International Business Machines

Find more information on the IBM website287.

IBM zSystems
Work in Progress

IC
Abbreviation for Individual Contributor

ICE
Abbreviation for Internal Compiler Error

IEEE
Abbreviation for Institute of Electrical and Electronics Engineers

Intel 64
See arm64

Intel x86
See i386

IRC
Abbreviation for Internet Relay Chat

IRCC
Abbreviation for Ubuntu IRC Council

Image
Within the context of Ubuntu development, an “Image” refers to an .iso file that con-
tains a bootable Ubuntu installer that can be burned to a CD to make installation disks.

See also: www.releases.ubuntu.com288, Optical disc image (Wikipedia)289

Individual Contributor
Work in Progress

Institute of Electrical and Electronics Engineers
Work in Progress (see https://www.ieee.org/)

284 https://en.wikipedia.org/wiki/GNU
285 https://www.gnu.org
286 https://en.wikipedia.org/wiki/I386
287 https://www.ibm.com/
288 https://www.releases.ubuntu.com/
289 https://en.wikipedia.org/wiki/Optical_disc_image

129 of 146

https://en.wikipedia.org/wiki/GNU
https://www.gnu.org
https://en.wikipedia.org/wiki/I386
https://www.ibm.com/
https://www.releases.ubuntu.com/
https://en.wikipedia.org/wiki/Optical_disc_image
https://www.ieee.org/

Intent to Package
Work in Progress (see https://wiki.debian.org/ITP)

Internal Compiler Error
Work in Progress

Internet Relay Chat
Internet Relay Chat (IRC)

ISO
Work in Progress

ITP
Abbreviation for Intent to Package

Kernel
Work in Progress

Keyring
Work in Progress

Launchpad
The general development platform where Ubuntu itself and most of Ubuntu related
software projects live.

See: Launchpad (explanation article) (page 74)

Linux
Linux is an Open Source Operating System Kernel originally created by Linus Torvalds in
1991. It forms the core of various Linux Distributions, such as Debian and Ubuntu. Linux
is known for its stability, security, and flexibility, making it a popular choice for servers,
desktops, and embedded systems.

See also: Linux (Wikipedia)290

LinuxONE
Work in Progress

Linux Containers
See LXC

Little-Endian
Work in Progress

See also: Endianness

Long Term Support
Work in Progress

LP
Abbreviation for Launchpad

LTS
Abbreviation for Long Term Support

LXC
Linux Containers (see https://linuxcontainers.org/lxc/introduction/)

290 https://en.wikipedia.org/wiki/Linux

130 of 146

https://wiki.debian.org/ITP
https://en.wikipedia.org/wiki/Linux
https://linuxcontainers.org/lxc/introduction/

LXD
LXD is system container manager (see https://documentation.ubuntu.com/lxd/en/
latest/)

Main
A Component of everyUbuntu Series (page 69) in theUbuntu Archive that containsOpen
Source Packages which are supported and maintained by Canonical.

See: Components (page 70)

Main Inclusion Review
The review process when a Package in Universe orMultiverse gets requested to be pro-
moted toMain or Restricted .

See: Main Inclusion Review (explanation article) (page 81)

Mailing List
Work in Progress

Maintainer
Work in Progress

Masters of the Universe
Work in Progress

Merge
Work in Progress

Merge Conflict
Work in Progress

Merge Proposal
Work in Progress

Micro-Release Exception
In some cases, when upstream fixes bugs, they do a new “micro-release” instead of just
sending patches. If all of the changes are appropriate for an SRU , then it is acceptable
(and usually easier) to just upload the complete new upstreammicro-release instead of
backporting the individual patches.

See: New upstreammicroreleases (Ubuntu SRU Documentation)291

MIR
Abbreviation forMain Inclusion Review

MIR Team
The Ubuntu team that reviews requests to promote Packages in Universe orMultiverse
toMain or Restricted .

See: Main Inclusion Review (explanation article) (page 81)

Mirror
A server that “mirrors” (replicates and keeps in sync) the content of another server to
distribute network traffic, reduce latency, and provide redundancy, ensuring high avail-
ability and fault tolerance.

See also: Archive Mirror , CD Mirror

291 https://documentation.ubuntu.com/sru/en/latest/reference/requirements/#reference-criteria-microreleases

131 of 146

https://documentation.ubuntu.com/lxd/en/latest/
https://documentation.ubuntu.com/lxd/en/latest/
https://documentation.ubuntu.com/sru/en/latest/reference/requirements/#reference-criteria-microreleases

MOTU
Abbreviation forMasters of the Universe

MP
Abbreviation forMerge Proposal

MRE
Abbreviation forMicro-Release Exception

Multiverse
A Component of everyUbuntu Series (page 69) in theUbuntu Archive that contains Pack-
ages of Closed Source Software orOpen Source Software restricted by copyright or legal
issues. These Packages are maintained and supported by the Ubuntu community.

See: Components (page 70)

Namespace
A concept in computer science and software development that defines a scope or con-
text in which identifiers (such as variable names, functions, or classes) are unique and
distinct. It helps prevent naming conflicts and organizes code elements into separate
compartments. Namespaces are commonly used in programming languages to group
and categorize code, making it more manageable and maintainable. They play a cru-
cial role in encapsulation and modularity, allowing developers to create reusable and
organized code structures. Namespaces are particularly important in larger software
projects where numerous components and libraries need to coexist without clashing
with each other’s names.

National Institute of Standards and Technology
Work in Progress

Native Package
Native source packages are Source Packages that are their ownUpstream, therefore they
do not have an orig tarball.

See: Native Source Packages (explanation) (page 52)

Not built from Source
Work in Progress

NBS
Abbreviation for Not built from Source

Never Part Of A Stable Release
Work in Progress

NIST
Abbreviation for National Institute of Standards and Technology

NPOASR
Abbreviation for Never Part Of A Stable Release

NVIU
Abbreviation for Newer Version in Unstable

Newer Version in Unstable
Work in Progress

Open Source Software
Open source software is any software with a license that guarantees a certain set of

132 of 146

rights to users of the software: the rights to use, study, modify, and distribute both the
software and its source code for any purpose.

The definition of open source software has significant overlap with Free Software, so
the two categories are often collectively referred to as Free and Open Source Software.

See also: The Open Source Initiative’s standard definition of Open Source292

Operating System
An operating system (OS) is essential system software that manages computer hard-
ware and software resources. It provides crucial services for computer programs, in-
cluding hardware control, task scheduling, memory management, file operations, and
user interfaces, simplifying program development and execution.

See also: Operating system (Wikipedia)293

orig tarball
original tarball

The .orig.tar.ext and .orig-component.tar.ext (where ext can be gz, bz2, lzma and
xz and component can contain alphanumeric characters (a-zA-Z0-9) and hyphens -)
tar(5)294 archive files of a Debian Source Package that contains the original Source of
the Upstream project.

See also: dpkg-source(1)295, tarball

OS
Abbreviation for Operating System

OSS
Abbreviation for Open Source Software

Package
Work in Progress

Package Manager
Work in Progress

Patch
A patch is a (often small) piece of code or a software update designed to fix or improve
a computer program or system. It is typically applied to address Security Vulnerabilities,
Bugs, or enhance functionality, ensuring the software remains up-to-date and reliable.
Patches are essential for maintaining software integrity and security.

See: Patches (explanation) (page 56)
See also: Patch (Wikipedia)296

PCRE
Abbreviation for Perl Compatible Regular Expressions

292 https://opensource.org/osd
293 https://en.wikipedia.org/wiki/Operating_system
294 https://manpages.ubuntu.com/manpages/noble/en/man5/tar.5.html
295 https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
296 https://en.wikipedia.org/wiki/Patch_(computing)

133 of 146

https://opensource.org/osd
https://en.wikipedia.org/wiki/Operating_system
https://manpages.ubuntu.com/manpages/noble/en/man5/tar.5.html
https://manpages.ubuntu.com/manpages/noble/en/man1/dpkg-source.1.html
https://en.wikipedia.org/wiki/Patch_(computing)

Perl Compatible Regular Expressions
Work in Progress

See also: PCRE (Reference Implementation)297

Personal Package Archive
Work in Progress

PKCS
Abbreviation for Public Key Cryptography Standards

Pocket
A pocket is a Package sub-repository within theUbuntu Archive. EveryUbuntu Series has
the pockets release (page 69), security (page 69), updates (page 69), proposed (page 69),
and backports (page 70).

See: Pockets (explanation) (page 69)

POSIX
Abbreviation forPortableOperating System Interface: A family of standards specifiedby
the IEEE Computer Society for maintaining compatibility between Operating Systems.
POSIX defines the API , along with command line shells and utility interfaces, for soft-
ware compatibility with variants of Unix and other Operating Systems.

PowerPC
Work in Progress

PPA
Abbreviation for Personal Package Archive

ppc64el
Work in Progress (PowerPC64 Little-Endian)

PR
Abbreviation for Pull Request

Public Key Cryptography Standards
Work in Progress

See also: PKCS (Wikipedia)298

Pull
Work in Progress

Pull Request
Work in Progress

Push
Work in Progress

Real Time Operating System
Work in Progress

Rebase
Work in Progress

Reduced Instruction Set
a CPU characterized by a simplified and streamlined set of instructions, optimized for

297 https://www.pcre.org/
298 https://en.wikipedia.org/wiki/PKCS

134 of 146

https://www.pcre.org/
https://en.wikipedia.org/wiki/PKCS

efficient and fast execution of basic operations. RISC processors typically prioritize
speed over complexity.

Examples of RISC Architectures are arm64, armhf , RISC-V , ppc64el, and PowerPC .

See also: Reduced instruction set computer (Wikipedia)299

RegEx
Abbreviation for Regular Expression

Regular Expression
A sequence of characters that specifies a text-matching pattern. String-search algo-
rithms usually use these patterns for input validation or find (and replace) operations
on strings.

While this general term stems from theoretical computer science and formal language
theory, people usually think of Perl Compatible Regular Expressions (PCRE).

Repository
Work in Progress

Note

ambiguity between git or apt repository

Request for Comments
Work in Progress

See also: Request for Comments (Wikipedia)300

Request of Maintainer
Work in Progress

Request of Porter
Work in Progress

Requested by the QA team
Work in Progress

Request of Security Team
Work in Progress

Request of Stable Release Manager
Work in Progress

Restricted
A Component of every Ubuntu Series (page 69) in the Ubuntu Archive that contains
Closed Source Packages which are supported and maintained by Canonical.

See: Components (page 70)

RFC
Abbreviation for Request for Comments

RISC
Abbreviation for Reduced Instruction Set Computer

299 https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
300 https://en.wikipedia.org/wiki/Request_for_Comments

135 of 146

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Request_for_Comments

RISC-V
Work in Progress

riscv64
Work in Progress

RoM
Abbreviation for Request of Maintainer

Root
Work in Progress

RoP
Abbreviation for Request of Porter

RoQA
Abbreviation for Requested by the QA team

RoSRM
Abbreviation for Request of Stable Release Manager

RoST
Abbreviation for Request of Security Team

RTOS
Abbreviation for Real Time Operating System

Rules File
The debian/rules file in a Source Package.

See: Basic overview of the debian/ directory (page 84)

See also: Section 4.9. Main building script (Debian Policy Manual v4.6.2.0)301

s390x
Work in Progress

Seeds
Seeds are lists of packages, that define which packages goes into theMain component
of the Ubuntu Archive and which packages goes into the distribution images.

Series
A series refers to the Packages in the Ubuntu Archive that target a specific Ubuntu ver-
sion. A series is usually referred to by its Code name.

See: Series (explanation) (page 69)

Service-level Agreement
Work in Progress

Shell
Work in Progress

Signature
A digital signature is a cryptographic record that verifies the authenticity and integrity
of data.

Every Package in the Ubuntu Archive is digitally signed, enabling users to detect data
corruption during the download or unwanted/malicious modifications. Furthermore,

301 https://www.debian.org/doc/debian-policy/ch-source.html#main-building-script-debian-rules

136 of 146

https://www.debian.org/doc/debian-policy/ch-source.html#main-building-script-debian-rules

someUpstream projects sign their releases, which lets UbuntuMaintainers and users of
the corresponding packages verify that the Source Code is from the developers of the
upstream project.

The tool gpg(1)302 is commonly used to create and modify digital signatures. Further
information can be found in the GNU Privacy Handbook303.

Signing Key
Work in Progress

SLA
Abbreviation for Service-level Agreement

Source
Work in Progress

Source Code
The source code of a program is a set of human-readable instructions written in a pro-
gramming language. Those instructions are later converted to machine code to be di-
rectly executed by a computer. Generally, programmers study and modify software by
reading and editing the source code.

Source Package
A Debian source package contains the Source material used to build one or more Binary
Packages.

See: Source Packages (explanation) (page 52)

Source Tree
Work in Progress

Sponsor
Work in Progress

SRU
Abbreviation for Stable Release Update

SRU Verification Team
Work in Progress

Stable Release Managers
Work in Progress

Stable Release Update
Work in Progress

Stack
In computer science, a Stack is a data-structure that can store a collection of elements
linearly with two primary operations:

• “Push”: adds an element to the collection

• “Pop”: removes the most recently added element in the collection

Stack implementatuons also often have a “Peak” operation to see the most recently
added element in the collection without removing it.

302 https://manpages.ubuntu.com/manpages/noble/en/man1/gpg.1.html
303 https://www.gnupg.org/gph/en/manual.html#AEN136

137 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/gpg.1.html
https://www.gnupg.org/gph/en/manual.html#AEN136

The name Stack stems from the analogy of items “stacked” ontop of eachother like a
stack of plates where you have to remove the plates above to access the plates below.

See also: Stack (abstract data type)304

Staging Environment
Work in Progress

Standard Output
Work in Progress

tarball
A file in the tar(5)305 archive format, which collects any number of files, directories,
and other file system objects (symbolic links, device nodes, etc.) into a single stream of
bytes. The format was originally designed to be used with tape drives, but nowadays it
is widely used as a general packaging mechanism.

See also: orig tarball

Text Encoding
Text encoding refers to the method or schema used to represent and store text char-
acters in a digital format. It involves assigning numerical codes (typically binary) to each
character in a character set, which allows computers to process and display text.

For example, ASCII and UTF-8 are commonly used text encoding formats.

The choice of a text encoding format is essential for ensuring proper character repre-
sentation, especially when dealing with different languages and special characters.

TLS
Abbreviation for Transport Layer Security

TPM
Abbreviation for Trusted Platform Module

Transport Layer Security
Work in Progress

Trusted Platform Module
Work in Progress

TUI
Abbreviation for text-based User Interface

Ubuntu
The word “ubuntu” is derived from the pronunciation of an an ancient African word
“oǒ’boǒntoō” meaning ‘humanity to others’. It is often described as reminding us that ‘I
am what I am because of who we all are’.

The Ubuntu Operating System tries to bring that spirit to the world of computers and
software. The Ubuntu Distribution is a Debian-based Linux Distribution and aims to rep-
resents the best of what the world’s software community has shared with the world.

See: The story of Ubuntu306, Ubuntu ethos307, Ubuntu Project Governance308

304 https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
305 https://manpages.ubuntu.com/manpages/noble/en/man5/tar.5.html
306 https://ubuntu.com/about
307 https://ubuntu.com/community/ethos
308 https://ubuntu.com/community/governance

138 of 146

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://manpages.ubuntu.com/manpages/noble/en/man5/tar.5.html
https://ubuntu.com/about
https://ubuntu.com/community/ethos
https://ubuntu.com/community/governance

Ubuntu Archive
The Ubuntu Package Archive is and APT Repository that is preconfigured by default on
Ubuntu installations. It hosts Debian Binary Packages (.deb files) and Source Packages
(.dsc files).

See: Ubuntu Package Archive (explanation) (page 68)

Ubuntu autopkgtest Cloud
Work in Progress

See: autopkgtest.ubuntu.com309

Ubuntu Base Packages
Packages that are in the Main or Restricted Component . These are packages that are
maintained by Canonical, because they are fundamental for Ubuntu.

See also: Main Inclusion Review

Ubuntu Cloud Archive
Work in Progress

See: Cloud Archive (Ubuntu Wiki)310

Ubuntu Code of Conduct
Work in Progress

See: https://ubuntu.com/community/ethos/code-of-conduct

Ubuntu CVE Tracker
Work in Progress (see https://launchpad.net/ubuntu-cve-tracker and https://ubuntu.
com/security/cves)

Ubuntu Delta
A modification to an Ubuntu Package that is derived from a Debian Package.

See also: Upstream & Downstream (explanation) (page 49)

Ubuntu Desktop
Work in Progress

Ubuntu Developer Summit
Between 2004 and 2012, Ubuntu releases were planned during regularly scheduled
summits, where the greater Ubuntu community would come together for planning and
hacking sessions. This event occurred two times a year, each one running for a week.
The discussions were highly technical and heavily influenced the direction of the sub-
sequent Ubuntu release.

These events were called “Ubuntu Developer Summit” (UDS).

These events are continued since November 2022 as “Ubuntu Summit” (US) to include
the broader Ubuntu community and not only developers.

See also: Ubuntu Developer Summit is now Ubuntu Summit (Ubuntu Blog)311, Devel-
oper Summit (Ubuntu Wiki)312

309 https://autopkgtest.ubuntu.com/
310 https://wiki.ubuntu.com/OpenStack/CloudArchive
311 https://ubuntu.com/blog/uds-is-now-ubuntu-summit
312 https://wiki.ubuntu.com/DeveloperSummit

139 of 146

https://autopkgtest.ubuntu.com/
https://wiki.ubuntu.com/OpenStack/CloudArchive
https://ubuntu.com/community/ethos/code-of-conduct
https://launchpad.net/ubuntu-cve-tracker
https://ubuntu.com/security/cves
https://ubuntu.com/security/cves
https://ubuntu.com/blog/uds-is-now-ubuntu-summit
https://wiki.ubuntu.com/DeveloperSummit
https://wiki.ubuntu.com/DeveloperSummit

Ubuntu Discourse
A Discourse instance about general Ubuntu development that is accessible to the gen-
eral public, where you can find discussions, announcements, team updates, documen-
tation and much more.

Feel free to introduce yourself313.

See: discourse.ubuntu.com314

Ubuntu ESM Team
Work in Progress

Ubuntu flavours
Ubuntu flavours are Distributions of the default Ubuntu releases, which choose their
own default applications and settings. Ubuntu flavours are owned and developed by
members of the Ubuntu community and backed by the full Ubuntu Archive for Packages
and updates.

Officially recognised flavours are:

• Edubuntu315

• Kubuntu316

• Lubuntu317

• Ubuntu Budgie318

• Ubuntu Cinnamon319

• Ubuntu Kylin320

• Ubuntu MATE321

• Ubuntu Studio322

• Ubuntu Unity323

• Xubuntu324

Ubuntu IRC Council
Work in Progress

See also: IRC Council (Ubuntu Wiki)325

Ubuntu Keyserver
Work in Progress

313 https://discourse.ubuntu.com/c/intro/101
314 https://discourse.ubuntu.com
315 https://edubuntu.org/
316 https://kubuntu.org/
317 https://lubuntu.me/
318 https://ubuntubudgie.org/
319 https://ubuntucinnamon.org/
320 https://www.ubuntukylin.com/index-en.html
321 https://ubuntu-mate.org/
322 https://ubuntustudio.org/
323 https://ubuntuunity.org/
324 https://xubuntu.org/
325 https://wiki.ubuntu.com/IRC/IrcCouncil

140 of 146

https://discourse.ubuntu.com/c/intro/101
https://discourse.ubuntu.com
https://edubuntu.org/
https://kubuntu.org/
https://lubuntu.me/
https://ubuntubudgie.org/
https://ubuntucinnamon.org/
https://www.ubuntukylin.com/index-en.html
https://ubuntu-mate.org/
https://ubuntustudio.org/
https://ubuntuunity.org/
https://xubuntu.org/
https://wiki.ubuntu.com/IRC/IrcCouncil

Ubuntu Pro
Work in Progress

See: Ubuntu Pro (homepage)326

Ubuntu Server
Work in Progress

Ubuntu SRU Team
Work in Progress

See also: Ubuntu SRU Team327

Ubuntu Sponsors
Work in Progress

See also: Ubuntu Sponsors328

Ubuntu Security Sponsors
Work in Progress

See also: Ubuntu Security Sponsors Team329

Ubuntu Stable Release
Ubuntu stable releases are officially-published versions of Ubuntu and their packages.

Ubuntu Summit
The Ubuntu Summit (US) is a continuation of Ubuntu Developer Summit since November
2022. The change in name aims to broadening the scope, which opens the event up to
additional audiences.

While the Ubuntu Developer Summit was focused on technical development, the talks
andworkshops of theUbuntu Summit will cover development aswell as design, writing,
and community leadership with a wide range of technical skill levels.

The name also results in a nifty new acronym, “US”, or more appropriately, simply “Us”.
This fits very nicely with the meaning of Ubuntu, “I am what I am because of who we all
are”.

If you have any question feel free to send an email at summit@ubuntu.com.

Also, check out the Ubuntu Summit mailing list330.

You can find more information at summit.ubuntu.com331.

UCA
Abbreviation for Ubuntu Cloud Archive

UCT
Abbreviation for Ubuntu CVE Tracker

UDS
Abbreviation for Ubuntu Developer Summit

326 https://ubuntu.com/pro
327 https://wiki.ubuntu.com/StableReleaseUpdates#Contacting_the_SRU_team
328 https://launchpad.net/~ubuntu-sponsors
329 https://launchpad.net/~ubuntu-security-sponsors
330 https://lists.ubuntu.com/mailman/listinfo/summit-news
331 https://summit.ubuntu.com/

141 of 146

https://ubuntu.com/pro
https://wiki.ubuntu.com/StableReleaseUpdates#Contacting_the_SRU_team
https://launchpad.net/~ubuntu-sponsors
https://launchpad.net/~ubuntu-security-sponsors
mailto:summit@ubuntu.com
https://lists.ubuntu.com/mailman/listinfo/summit-news
https://summit.ubuntu.com/

UI
Abbreviation for User Interface

UIFe
Abbreviation for User Interface Freeze Exception

Uniform Resource Identifier
Work in Progress

See also: Uniform Resource Identifier (Wikipedia)332

Uniform Resource Locator
Work in Progress

See also: URL (Wikipedia)333

Universe
A Component of everyUbuntu Series (page 69) in theUbuntu Archive that containsOpen
Source Packages which are supported and maintained by the Ubuntu community.

See: Components (page 70)

Unix
Unix is an Operating System whose development started in the late 1960s at AT&T Bell
Labs. It is characterized by its multi-user and multi-tasking capabilities, hierarchical file
system, and a suite of Command Line utilities. Unix has been influential in shapingmod-
ern Operating Systems and remains the basis for various Unix-like systems, including
Linux andmacOS.

See also: Unix (Wikipedia)334

Upstream
A software project (and associated entities), another software project depends on di-
rectly or indirectly.

See Upstream (explanation) (page 49)

URI
Abbreviation for Uniform Resource Identifier

URL
Abbreviation for Uniform Resource Locator

US
Abbreviation for Ubuntu Summit

User Experience
The overall experience and satisfaction a user has while interacting with a product or
system. It considers usability, accessibility, user flow, and the emotional response of
users to ensure a positive and efficient interactionwith theUser Interface and the prod-
uct as a whole.

User Interface
Refers to the visual elements and design of a digital product or application that users
interact with. It includes components like buttons, menus, icons, and layout, focusing
on how information is presented and how users navigate through the interface.

332 https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
333 https://en.wikipedia.org/wiki/URL
334 https://en.wikipedia.org/wiki/Unix

142 of 146

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Unix

User Interface Freeze Exception
Work in Progress

See: Ubuntu development process (page 58)

UX
Abbreviation for User Experience

VCS
Abbreviation for Version Control System

Version Control System
Asoftware tool or systemthat enables developers to track andmanage changes to their
Source Code and collaborate with others effectively. It maintains a history of Source
Code revisions, allowing users to revert to previous versions, track modifications, and
work on different Branches of Source Code simultaneously. Version Control Systems are
crucial for Source Code management and collaboration in Open Source Software devel-
opment projects.

Waiting on Upstream
Work in Progress

See also: Upstream

Watch File
The debian/watch file in a Source Package.

See: Basic overview of the debian/ directory (page 84)

See also: uscan(1)335, Section 4.11. Upstream source location (Debian Policy Manual
v4.6.2.0)336

WoU
Abbreviation forWaiting on Upstream

x64
See amd64

x86
See i386

x86-64
See amd64

x86_64
See amd64

Caution

The Packaging and Development guide is currently undergoing a major overhaul to bring
it up to date. The current state you are seeing now is a preview of this effort.

The current version is unstable (changing URLs can occur at any time) andmost content is
not in properly reviewed yet. Proceedwith caution andbe aware of technical inaccuracies.

335 https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
336 https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

143 of 146

https://manpages.ubuntu.com/manpages/noble/en/man1/uscan.1.html
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch
https://www.debian.org/doc/debian-policy/ch-source.html#upstream-source-location-debian-watch

If you are an experienced packager and would like to contribute, we would love for you to
be involved! See our contribution page (page 145) for details of how to join in.

144 of 146

5. Contribute to the Ubuntu
Packaging Guide
The Ubuntu Packaging Guide337 is an open source project that warmly welcomes community
contributions and suggestions.

This document describes how to contribute changes to the Ubuntu Packaging Guide. If you
don’t already have a GitHub account, you can sign up on their website338.

5.1. How to contribute
5.1.1. I want to raise an issue
We use GitHub issues to track things that need to be fixed. If you find a problem and want
to report it to us, you can click on the “Give feedback” button at the top of any page in the
Guide, and it will open an issue for you.

Alternatively, you can open an issue directly339 and describe the problem you’re having, or
the suggestion you want to add.

5.1.2. I have a question about packaging
If you’re stuck and have a question, you can use our GitHub discussion board to ask, or start
a discussion340.

Note that we may not be able to respond immediately, so please be patient!

5.1.3. I want to submit a fix
If you found an issue and want to submit a fix for it, or have written a guide you would like to
add to the documentation, feel free to open a pull request to submit your fix341 against our
2.0-preview branch. If you need help, please use the discussion board or contact one of the
repository administrators.

5.2. Contribution format for the project
5.2.1. Sphinx & reStructuredText
The Guide is built using Sphinx342. Articles should be written in reStructuredText. The fol-
lowing links might be helpful:

• A ReStructuredText Primer343

• Quick reStructuredText344

337 https://github.com/canonical/ubuntu-packaging-guide
338 https://github.com
339 https://github.com/canonical/ubuntu-packaging-guide/issues
340 https://github.com/canonical/ubuntu-packaging-guide/discussions
341 https://github.com/canonical/ubuntu-packaging-guide/pulls
342 https://www.sphinx-doc.org/
343 https://docutils.sourceforge.io/docs/user/rst/quickstart.html
344 https://docutils.sourceforge.io/docs/user/rst/quickref.html

145 of 146

https://github.com/canonical/ubuntu-packaging-guide
https://github.com
https://github.com/canonical/ubuntu-packaging-guide/issues
https://github.com/canonical/ubuntu-packaging-guide/discussions
https://github.com/canonical/ubuntu-packaging-guide/discussions
https://github.com/canonical/ubuntu-packaging-guide/pulls
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html

5.2.2. How to add a new Sphinx extension
In general, there are two places you will need to update to add new extensions.

• docs/conf.py - add the name of the extension to the extensions configuration parame-
ter

• docs/.sphinx/requirements.txt - add the name of the extension to the bottom of the
list

The documentation for most Sphinx extensions will tell you what text to add to the conf.py
file, as in this example:

extensions = [
'sphinx_copybutton',
'sphinx_design',

]

5.2.3. Translations
Weuse the localisation (l10n)module for Sphinx and gettext for translating theUbuntu Pack-
aging Guide.

Some notes about translating the guide:

• Some formatting is part of reStructuredText and should not be changed, including em-
phasis (which uses asterisks or underscores), paragraph ending before a code block (::)
and double backtick quotes (``).

• The Guide uses email-style reStructuredText links. If you see a link in the text like:

`Translatable link text <Link_Reference_>`_

Then replace the “Translatable link text” with your translations, but keep the
Link_Reference unchanged (even if it is in English). The same applies if a URL is used
instead of Link_Reference.

To test your translation, use make BUILDER-LANGUAGE command (for example, make html-it
will build HTML docs in Italian language).

146 of 146

	Tutorial
	Core tutorial
	Getting set up
	Making changes to a package
	Getting the tools
	Understanding the package
	Creating a patch with quilt
	Committing the changes
	Next steps

	Create a new package
	Fix a bug
	Merge a package from Debian

	How-to guides
	How do I…?
	Get the source of a package
	git-ubuntu
	Install
	Basic usage
	Example

	pull-pkg
	Install
	Basic usage
	Examples
	pull-lp-source
	pull-ppa-source
	pull-debian-source

	apt-get source
	Basic usage
	Example

	dget
	Install
	Basic usage
	Example

	Download a new upstream version
	Best practices
	Download new upstream version (if available)
	Check for new upstream version (no download)
	Force the download
	Download the source of older versions from the upstream project
	Further Information

	Build packages
	Prerequisites
	sbuild-based builds
	Building with debuild
	Source-only builds
	Local binary-only builds

	Resources

	Install built packages
	Using your package manager
	Install .deb files
	Uninstall packages
	Keep the configuration files
	Delete the configuration files

	Install packages from a PPA
	Using add-apt-repository
	Add PPA manually
	Download the .deb files
	Using pull-ppa-debs
	Using the Launchpad web interface

	Resources

	Run tests
	Upload packages to a PPA
	Patch management
	Prerequisites
	List patches
	Apply patches
	Unapply patches
	Verify patches
	Show details about a patch file
	Rename a patch file
	Remove a patch file
	Generate a patch file
	Edit a patch file
	Import a patch file
	Resources

	Propose changes
	Find a bug to fix
	Evaluate the bug report
	Identify the source package
	Check if the bug has been fixed
	Check if the bug is fixed in a newer Ubuntu
	Check if the bug is fixed in Debian
	Check if the bug is fixed upstream

	Offer to help
	Get the source code
	Create a patch to fix the issue
	Document the fix
	Test the fix
	Submit the fix

	Use schroots
	Request a freeze exception
	Merge a package from Debian
	Extract packages
	Extract a source package
	Extract a binary package

	Explanation
	Upstream and downstream
	Terminology
	Ubuntu delta
	Upstream
	Downstream

	Why do we upstream changes?

	Package model
	Source packages
	Source package formats
	Native source packages
	Format: 3.0 (quilt)
	Format: 3.0 (native)
	Format: 1.0
	3.0 formats improvements
	Other formats

	.changes file

	Binary packages
	Resources

	Patches
	Sending patches upstream
	When you should (not) rewrite a patch header to follow DEP 3
	Resources

	Ubuntu development process
	Beginning a new release
	Planning
	Merging with upstream and feature development
	Stabilisation and milestones (freezes)
	Testing weeks
	Debian Import Freeze
	Feature Freeze (FF)
	User Interface Freeze (UIF)
	Documentation String Freeze
	Kernel Feature Freeze
	Hardware Enablement Freeze
	Beta Freeze
	Kernel Freeze
	Non-language-pack translation deadline
	Final Freeze
	Unseeded packages

	Release Candidate
	Language pack translation deadline

	Finalisation
	Final Release
	Stable Release Updates
	When are SRUs necessary?
	Overview
	Verification
	SRU phasing
	Regressions
	Updates removal

	Ubuntu releases
	Release cadence
	LTS releases
	Point releases
	Interim releases
	Why does Ubuntu use time-based releases?

	Ubuntu version format
	Examples

	Release lifespan
	Regular support
	Long Term Support (LTS)

	Editions
	Ubuntu flavours
	Resources

	Ubuntu package archive
	Repositories
	Series
	Pockets
	release
	security
	updates
	proposed
	backports

	Suite
	Components
	main
	restricted
	universe
	multiverse

	Mirrors
	Country mirrors

	Package uploads
	Security update propagation
	Resources
	Landscape repositories

	Launchpad
	Why not use platforms like GitHub?
	Personal Package Archive (PPA)
	git-based workflow for the development of Ubuntu source packages
	Text markup
	Getting help
	IRC chat rooms
	Mailing lists
	Ask a question
	Report a bug

	Staging environment
	API
	Resources

	Sponsorship
	When can you request sponsorship?
	Requesting sponsorship
	Sponsoring a patch
	Responding to feedback from sponsors
	Resources

	Proposed migrations
	Importing changes from Debian (merges & syncs)
	How does Ubuntu import changes from Debian?
	Sync
	Merges

	Why does Ubuntu import changes from Debian?

	Transitions
	Backports
	Main Inclusion Review (MIR)
	Submit a package for Main Inclusion Review
	MIR team weekly meeting
	Resources

	Reference
	Basic overview of the debian/ directory
	The changelog file
	The control file
	The copyright file
	The rules file
	Additional files
	The install file
	The watch file
	The source/format file

	Additional Resources

	Debian policy
	Policy conformance
	debian/control file
	Standards-Version field
	Upgrading checklist

	Resources

	Supported architectures
	Other architectures
	Resources

	Filesystem hierarchy standard
	File classification
	Core filesystem hierarchies
	Root filesystem (/) hierarchy
	/usr hierarchy
	/var hierarchy

	Package version format
	DEP 3 – Patch file headers
	Standard fields
	Sample DEP-3 compliant headers
	Resources

	Launchpad text markup
	Referencing Launchpad bugs
	Pattern
	Examples

	Blank spaces
	URI addresses
	Examples

	Removal of “
	Resources

	Glossary

	Contribute to the Ubuntu Packaging Guide
	How to contribute
	I want to raise an issue
	I have a question about packaging
	I want to submit a fix

	Contribution format for the project
	Sphinx & reStructuredText
	How to add a new Sphinx extension
	Translations

